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Introduction

A vision from Vision Hotel

• “What if we have only one data point? (Making 
good reliability assessment under this 
circumstance) It is a vision.” – Prof. Way KUO

• A challenge: if we do not have enough historical 
failure data, how can we still evaluate the reliability 
with sufficient degree of confidence?

Source: http://en.beijingvision.cn/

http://en.beijingvision.cn/
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Overview of research activities

Fig. Structure of the research 
activities.
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Zoom in to axis 1:  Conceptual framework for failure causes
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Fig. A conceptual framework for failure causes
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• Belief risk index 𝑅𝑖𝑠𝑘𝐵:

• Belief degree of the decision maker that a given 
consequence occurs, considering the prediction of 
the PRA model and the EU in the PRA model.

• Design margin, degradation, aleatory 
uncertainty are modeled by 𝑅𝑖𝑠𝑘𝑃

∗ .

• Epistemic uncertainty is modeled by 𝜎𝐸 .

• Impact of knowledge and epistemic uncertainty.

• 𝑅𝑖𝑠𝑘𝐵 = 0.5: Total ignorance: due to EU, we 
cannot use the PRA model to make decisions.

• Perfect knowledge: 𝛼𝑒 → 0: 𝑅𝑖𝑠𝑘𝐵 → 𝑅𝑖𝑠𝑘𝑃
∗

• Graphical explanation: measures the distance from 
origin to the boundary of the failure region in the 
extended uncertainty space.

𝑅𝑖𝑠𝑘𝐵 = Φ
−𝜇𝑆

𝜎𝑆
2+𝜎𝑒

2
= Φ

−1

1

Φ−1 𝑅𝑖𝑠𝑘𝑃
∗ 2+𝛼𝑒

2

Fig. Interpretation of belief risk index in terms of distance to the 
failure region. 

For more details see: Zeng Z, Bani-Mustafa T (SS), Flage R, Zio E. An integrated risk index accounting for epistemic uncertainty in Probability Risk Assessment (PRA). Journal of 

Risk and Reliability 2021.

Zoom in to axis 1: Integrated index for risk and reliability



7

 Selected work - component-level dependency modeling:

Dependent failure process: modeling and analysis:

 A top-down method to identify 

dependency relations among 

failure mechanisms.

 A bottom-up “compositional” 

method for dependency 

modeling.

 A case study and experimental 

validations on a aviation valve.

Compositional 
modeling

Test results

Test set-up Test sample

Model validation

Example: When first-principles meets data

For details see: Z. Zeng, Y. Chen, E. Zio and R. Kang., 2017. A compositional method to 
model dependent failure behavior based on PoF models. Chinese Journal of Aeronautics, 
30(5), pp.1729-1739.
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 Selected work - system-level dependency modeling:

 An integrated model to consider 

system-level dependencies.

 A bisection-based reliability 

analysis method.

 An application on a hydraulic 

servo actuator.

Application on a HSA

Reliability analysis

Dependent failure process: modeling and analysis:

Example: When first-principles meets data

For details see: Zeng, Z., Kang, R. and Chen, Y., 2016. Using PoF models to predict system 
reliability considering failure collaboration. Chinese Journal of Aeronautics, 29(5), pp.1294-
1301.
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 Selected work - degradation-shock dependency modeling:

 A new reliability model is developed for degradation-shock dependence.

 Zone effect of random shocks magnitudes is considered.

 The model is applied on a sliding spool.

An example of degradation-shock 
dependence & zone effect

(a) Immediate 
stagnation

(b) Cumulative 
stagnation

Results of the application

Dependent failure process: modeling and analysis:

Example: When first-principles meets data

For details you can refer to: Fan, M., Zeng, Z., Zio, E. and Kang, R., 2017. Modeling dependent competing failure processes with degradation-shock 
dependence. Reliability Engineering & System Safety, 165, pp.422-430.
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Dynamic reliability updating

• Comparison to existing methods:

 Comparisons are made to methods 
using only statistical data and only 
condition-monitoring data.

 The developed method integrates 
information from the two sources.

 Parameter 𝐾 determines our trusts 
on the information sources.

Fig. Comparison of the posterior densities 
estimated using different data

Fig. Posterior 
distributions 
under different 
values of 𝐾

See Zeng, Z. and Zio, E., 2018. Dynamic risk assessment based on statistical failure data and 
condition-monitoring degradation data. IEEE Transactions on Reliability, 67(2), pp.609-622.

Example: When first-principles meets data



11

Big data driven fault diagnosis through deep and transfer learning

Example: When first-principles meets data

Test actuator

Load actuator

Nut accelerometers

Coupling magnets

Rigid bar on 

guide rails

X

Y
Z

(a) (b)

Nut 

temperature

Motor

temperature

Voltage

Current

Wang, J., Zeng, Z., Zhang, H., Barros, A. and Miao, Q., 2022. An Improved Triplet Network for Electromechanical
Actuator Fault Diagnosis Based on Similarity Strategy. IEEE Transactions on Instrumentation and Measurement, 71, 
pp.1-10.
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When principles of failure meet with industrial big data?

Fig. Structure of the research 
activities.



Looks good? Then?

Smart reliability engineering: Facing the challenges and 

opportunities of industry 4.0



It was the best of times, 

it was the worst of times.



• Internet of things

• Big data

• Artificial intelligence

• Smart factory



• Internet of things

• Big data

• Artificial intelligence

• Smart factory



Reliability of industry 4.0:

• Large scale, distributed system.

• Everything connected.

• Highly interdependent.

• Large amount of new technologies.

• Emergence of failures for complex systems.

Industry 4.0 for reliability 

• More data and knowledge are available.

• How to use them to in reliability? 

Cyber-
physical 
system

Physical system
•Sensor

•Actuator

Communication

Cyber system
•Computation

•Decision-making

• Cyber-physical systems are corner stones 
for industry 4.0.

• How to model?
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Reliability of Industry 4.0

Modeling of risk and resilience of interconnected infrastructures – 4 PhD projects 
funded by the chaire RRSC 
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Industry 4.0 for reliability

Digital failure twin for online reliability assessment and predictive maintenance 

of future manufacturing systems

• Project funded by ANR JCJC 2022 (1 PhD + 1 Postdoc).
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Industry 4.0 for reliability

Data-driven reliability modeling and opportunistic maintenance planning under 

deep uncertainty and dependencies

• Joint work with GE Health care 
• Real data -> Messy and deep uncertainty

• Potential dependency among the components but needs to be explored from data

• Objectives:
• Develop data-driven approach for reliability modeling considering possible dependencies.

• Develop data-driven covariate models for reliability prediction.

• Develop data-driven opportunistic maintenance model considering the possible dependency among the 
components.



Pilot study (I): Reliability modeling of a smart railway 

grid from cyber-physical system perspective

Work with Romain Ray, as part of the master project (09/2020 – 04/2021)
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Context : Why we need railway smart grid ?

• The transport sector is responsible for nearly 23% of energy-based CO2 emissions 
worldwide. All transport modes have increased their GHG emissions except railways.

• Road transport has the largest carbon footprint from transportation-related sources 
(72%) whereas railway has the lowest footprint (4%).

• Due to their low-carbon performance, railway transportation is a key element to 
reduce GHG gas emitted through transportation and meet the threshold set by the 
Paris agreement. 

• However, the railway industry is heavily reliant on electricity and a lot of wasted energy 
could be used as renewable energy or the braking energy from the train.

• This issue can be solved by developing Railway Smart Grid which are composed of 
different interconnected elements.

The implementation of RSG is driven by 4 key drivers :
• Decreased reliance on fossil fuels (energy recuperation, more efficient drive chain…)

• Lower the costs (Meets the emissions targets, fewer delays and penalties…)

• Attracting customer (Fewer delays, better services in peak…)

• Futureproofing (Reduced supply uncertainty with diverse mix, Scalable management…)

Source: International Union of Railways (UIC). « Energy Consumption and CO2 Emissions of world railway sector », 2012.
Steele et al,« Railway Smart Grids: Drivers, Benefits and Challenges », 2019
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An example of a smart railway station
Energy Management System 

(EMS)

Utility 
Grid

Photovoltaic generation 
system

Breaking power recuperation
system

Station loads : 
Lighting, air conditioning etc...

Charging station for electrical 
hybrid bus

Physical System : 
Cyber System : 

Telecomm. System :
Link direction :

Convertor :

Energy Storage System (ESS): 
Battery + Supercapacitor

DC
DC

AC
DC

DC
DC

DC
DC

DC
DC

DC
DC

Local controller

Local controller

Local controller

Local controller

Local controller

Performance Indicator Typical value

SOC value 50%

Busbar voltage 880V, 920V

DC/DC converter on 
railway voltage

820V, > 750V and < 
900V

Inverter voltage 860 < V < 940

P f (Power factor) 1

Key Performances Indicator :

Functions of this system:

• Recuperate the breaking energy
from the train.

• Photovoltaic generation.

• Manage the energy flow:

• When to buy/sell from the 
utility grid.

Implementation of the system:

• A distributed control system.

• Telecommunication is important 
to ensure the functionality of the 
control system.
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Motivation of the case study

Research questions : As we move from “traditional” system to CPS, Is there some benefits in term of reliability ?

What are the challenges we face when developing CPS ?

To answer those questions, we want to model a railway station with power consumption from :

• Loads in the station (50kw):
• Lighting.
• Air conditioning.
• Elevators etc...

• Charging station of an electrical hybrid bus (200KW, 4 mins every hour).

• And potential energy source:
• Utility grid.
• Solar energy.
• Breaking power from the train (The theoretical share of recoverable energy in railway system depends on 

the train’s speed profiles and the timetable and range from 15% for the main lines to 45% for the suburban 
lines.).

Objective: Develop a smart energy management system to 
reduce operating costs (CPS model)



25

Modeling - Physical system
• Utility grid: Energy source delivering electricity to the whole system.

• Breaking power recuperation system: Modelled as a random peaks
power source injected into the grid to simulate the trains braking.

• Photovoltaic generation system: Generating power injected into the
grid depending on the sun.

• Station load: The station’s components that consumes electric power
and modelled as a resistive load (e.g electrical signs, lighting fixtures,
escalators, elevators…).

• Charging station for electrical hybrid bus: modelled as a critical load
consuming high powers in short period.

• Energy Storage System (ESS):

• Supercapacitor: Modelled using a generic component. Primary
storage element due to high power storage particularly useful for
storing RBE.

• Batteries: Modelled using a generic component. Secondary storage
equipment and continuous source of low power.

• DC Busbar: The busbar connecting the inverter to the internal grid

• DC/DC converter: Buck-boost circuit to change voltage to operating
voltage of each load. It connects the railway system, ESS and hybrid
buses to the DC busbar.

• Bi-directional inverter: Modelled using a generic component. Converts
AC grid power to the DC bus voltage. It is used to regulate the DC busbar
voltage.

Physical model implemented on Simulink.

Supercapacitor implemented on Simulink.
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Modeling - Cyber system 

• The Cyber part manages the micro-grid by directing 
power flows. 

• It takes 10 variables from sensors as inputs, makes a 
decision and output 3 variables to actuators.

• It serves three main functions:

• Calculate reference value for the DC bus voltage.

• Determine the output power of the Energy Storage 
System depending on:

• Demand in the DC bus.

• Health of the super capacitor and battery.

• Determine if we need to sell power to grid based 
on the real-time electricity price.

Inputs and outputs of the Energy Management System (EMS)

Control logic for the output power determination implemented on Stateflow. 
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We consider the medium access control (MAC) layer:

• Communication protocols.

• TrueTime: An open-source toolbox for 
modelling communication network in 
Simulink.

Fig. An example of CSMA/CD protocol.

https://www.control.lth.se/research/tools-and-software/truetime/

• MAC is the layer that controls the hardware 
responsible for interaction with the wired, 
optical or wireless transmission medium.

• Data link layer of the OSI model.

• Two questions:
• Who gets the access?
• How to handle conflicts?

Modeling - Communication
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Power generated by the solar panel

Some outputs values of the degraded case :
Comparaison between two simulations:
-Ideal case : CPS model without failure(s)
-Degraded case : CPS model with failure(s)

Comparaison of two KPI the reference voltage (𝑉𝐷𝐶 𝑟𝑒𝑓)and 
the actual voltage of the DC bus (𝑉𝐷𝐶) in both cases.

More resilient compared to the “traditional” approach.   

Output of the EMS

Simulation of failure scenarios: Loss of utility grid
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Network schedule in the degraded case

Network schedule in the ideal case

• Since we interconnect elements, we have the ability to 
gather more and more data.

• Leads to a new failure mechanism introduced by CPS.

Simulation of failure scenarios: Communication performance degradation
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Simulation of failure scenarios: Sensor failure + grid failure
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What does “being smart” mean to reliability and resilience?

Challenges:

• Complexity of the system.

• New failure modes:
• Communication delays.
• Interplay of sensor failures and cyber system.
• Etc.

Opportunities

• More data and information.

• Possibility to reconfiguration the system.
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The way ahead

In the future:

• Extend the modeling to a “smart railway grid”: Many stations connected as a 
network.

• If we move from a traditional communication network to 5G?

• Model checking for CPS based on artificial intelligence techniques.
• How to generate the testing scenarios?
• How to identify failures in a more efficient way?



Pilot study (II): Reliability assessment and knowledge 

extraction from linguistic data

Work with Jean Meunier-Pion, student from Parcours Recherche (09/2020 – 06/2023)



34

Context: Why considering linguistic data

Because they are there!

• Customer review.

• Accident reports.

• Media reports.

• Maintenance reports from technicians.
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Metrics and assessment framework

Assessment framework:

• Collect the comment and rating from customer’s review data
• Web scraper is used.

Data collection

Information extraction • Select training samples.
• Manually labels the training samples.
• Train a classification model.
• Use the classification model to determine if a review contains failures.

Numerical evaluation • Calculate the probability of failure.

A 
Classification 

based 
assessment 
method is 
needed!
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Our effort (I): An ensemble of logistic regression

Review

Sub-model 1

Sub-model 2

Prediction 1

Prediction 2

Soft voting
(average)

Final prediction

Model – General structure: A logistic regression model using only the 
rating of the customer.
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Our effort (I): An ensemble of logistic regression

Performance evaluation
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Our effort (II): Pre-trained transformer with sliding window

Model structure
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The way ahead

In the future:

• Structured knowledge extraction.
• When does a failure happens?
• On which part?
• Cause and effect?
• Etc.

• Apply on risk and reliability data like accident reports and maintenance report.



Pilot study (III): Encoding knowledge with machine learning
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Why not just data-driven models?

A motivating example from SLB:

• A large dataset of Teams meeting quality.

• Decision problem: Should we recommend 
to use 24GHz instead of 50GHz?

• Seem yes. But…
• 50GHz is faster but with a lower range.
• 24GHz is slower but with a wider range.
• Implying confounding effect in the 

dataset.

Wifi
freq

Metting
quality

Room 
size

Wife 
strength
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How to solve the problem?

Using knowledge to strengthen the capability of data-driven model

• Causal knowledge: 
• Renato Rosa De Oliveira

• 1st Year Engineering student on Parcour Recherche (2022 – 2025)
• Do not step in the same river twice - Learning from past failures through causal inference
• Focus: Apply causal inference to improve the fault detection and diagnosis

• Adam Younsi
• 1st Year Engineering student on Parcour Recherche (2022 – 2025)
• Let reports speak - Mining causal relations in critical infrastructure failures from accident 

reports
• Focus: Discovery causal relationships related to critical infrastructure failures

• Physical knowledge:
• ADITYA SANJU

• 3rd student in Bachelaor’s program, COEP Technological University, India
• Apply physics-informed deep learning to improve the performance of fault diagnosis and 

prognosis.
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Thank you for your attention!

Your questions/comments are sincerely welcomed!

zhiguo.zeng@centralesupelec.fr

Confucius: “When a man’s good nature and 

his accomplishments are well balanced, he 

thus becomes a man of virtue.“


