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▪ Information and Communication

Technologies (ICTs) are present at all

levels of the smart grid

▪ Heterogenous technologies serve

different functions of the grid

▪ Power-ICT interdependencies drive the

operation of the power system,

especially in case of extreme events

Smart Grids

IntroductionIntroduction
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* http://www.smartgrids-cre.fr/media/documents/Alcatel-Lucent_SmartGrid_Brochure_EN.pdf



Smart Distribution Grids
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▪ The distribution grid is a meshed network, which is operated radially

▪ Power lines have either manual or remote switches

▪ Two feeders are joined with a normally open Tie-switch

▪ Field devices connect to the control center

Operation of the Distribution Grid

Problem DescriptionProblem Description
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Feeder 1

Feeder 2



Operation of the Distribution Grid
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▪ Field devices and crews connect to the control center through telecoms

▪ Telecom points are energized from the grid and have battery storage

▪ Telecom infrastructure can be from different technologies

▪ A two-way dependence exists between power and telecom systems

Control Center

Link of technology 2Link of technology 1Power Supply
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▪ Detect (and locate) failures
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▪ Detect (and locate) failures

▪ Isolate the failures to the smallest allowable segment of the grid
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▪ Detect (and locate) failures

▪ Isolate the failures to the smallest allowable segment of the grid

▪ Target: Restore as much service as possible while failures are isolated



▪ Detect (and locate) failures

▪ Isolate the failures to the smallest allowable segment of the grid

▪ Target: Restore as much service as possible while failures are isolated

▪ Actions: Use available resources to recover unserved loads, e.g., remote/manual switches, repair crews,

distributed generators

Distribution Service Restoration

Problem DescriptionProblem Description
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Network Setting
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Proposed Approach
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Start

Input Data

• Grid configuration and connections

• Telecom infrastructure serving the grid

• Damaged power lines

• Travel and repair (isolation) and DG placement times
Service Restoration

• Power flow quantities (DC power flow: active/reactive 

power, bus voltages, shed power)

• State of RCSs

• State of manual switches

• Schedule of repair crews

• Schedule of isolation crews

• Schedule of DG placement crews

MILP Problem – Service Restoration

End

Results

• Supplied power

• Allocation strategy of resilience resources

MILP Problem – Fast Response

Remote Isolation

• Reduced damaged zone

Reconfiguration

• Power flow quantities (DC power flow)

• State of RCSs

Automatic Isolation

• Damaged zone



Objective:

Subject to:

Topological and physical constraints of the grid, Impact of damage scenario, Interdependence constraints

Where:

→ Goal: Find the network configuration and intervention planning that optimize the

system resilience with minimal costs

Optimization Formulation: MILP

System ModelSystem Model
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▪ 𝑝𝑖,t
𝑛𝑠

: Non-supplied power to node 𝑖 at time 𝑡

▪ 𝑎 : Availability of line 𝑙 at time 𝑡
▪ 𝑦 : Connection state of loads

▪ 𝑝 : Active/Reactive power, node voltages

▪ 𝑇 : State of telecom services

▪ 𝑠𝑤 : State of the switches

▪ 𝐶 : various costs

▪ 𝑟𝑐,𝑚𝑐, 𝑔𝑐 : planning of crews



▪ Routing and scheduling

▪ Task completion

▪ Battery of telecom access points

▪ Power supply to telecom points

▪ Telecom service of power nodes

Key constraints

System ModelSystem Model
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Network Setting

SimulationSimulation
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▪ Failure scenario in 7 power lines and one telecom

access points (X1)

▪ Power lines contain either remote or manual

switches

▪ Configuration: 3 HV/MV substations, 33 MV buses,

42 power lines

▪ Access points have battery capacity of 3 hours

Telecom Point Number Power Supply

Aggregation Point 1 Node 9

Fixed Access Point (X) 2 Node 32, Node 20

Wireless Access Point (W) 2 Node 32, Node 35

Utility-owned telecom point (U) 3

Depot 2

Depot Repair 

Crews

Manual 

Isolation Crews

DG Placement 

Crews

DP1 2 1 1

DP2 2 1 1



▪ Only automatic recloser, circuit breakers and

remote switches are used for fast reconfiguration

▪ The optimization is conducted in the

reconfiguration phase (t = D)

▪ The result from this stage is taken as input to the

restoration stage

▪ Networks with underground (U) lines perform

better due to improved isolation

Result 1

ResultsResults
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Figure 2. Illustration of fast response phases

Figure 1.

Evolution of

supplied power

during fast

response



▪ Neglecting the state of the telecom infrastructure overestimates the recovery capabilities

▪ Considering the evolution of telecom state during an extreme event and the coordination of

resilience levers makes it possible to follow a better recovery strategy

▪ Networks with underground (U) lines once again perform overall better due to improved isolation

Result 2

ResultsResults
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Figure 3. Evolution of supplied power during service restoration

Overhead 
lines

Underground 
lines



Result 2
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▪ The model tends to prioritize critical telecom points, which

contribute to service restoration in subsequent time periods

Figure 2. Crew Schedule – Telecom-agnostic case 
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▪ The model tends to prioritize critical telecom points, which

contribute to service restoration in subsequent time periods

Figure 3. Crew Schedule – Telecom-aware case 
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Major contributions
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▪ A DSR co-optimization model is proposed to find optimal recovery strategies while leveraging

information on the availability of telecom assets

▪ The co-optimization captures various interdependencies: between power and ICT networks, among

resilience resources, and within public-private telecoms

▪ Different grid architectures including the two broad families of overhead and underground

networks are considered, which allows minimal model changes for configuration evolution

▪ A simplified formulation is proposed for radiality conditions, and a realistic multi-feeder network is

constructed to validate the proposed model.

▪ Fast moving isolation crews are introduced to allow highly flexible recovery



Current Work
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▪ The power flow model is linear, which is very informative for the “system level” view required for

resilience assessment. Nevertheless, for a finer description of the interdependent network, the

model must above all be completed for the telecom layer

▪ Introduce telecom intervention crews into the model

▪ The complexity of the model remains acceptable (in the order of a thousand nodes), but can be

enhanced by working on a low-complexity solution for the MILP
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