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Ilnterdependent networks & risk landscape ©
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IResiIience — the concept &
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Resilience = survivability 4+ recoverability
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IResiIience — the concept &

A A
Performance Performance

—%

® o o
™ =
> >
time time
A
Performance
2N
— @@ [\
y -(j) /\ (\\1
> >
time time

12/7/2022 FANG @ RRCS Chair Day 5



12/7/2022

FANG @ RRCS Chair Day



IWhY we need resilient? Gy

CentraleSupélec

System-level “ilities”: system attributes for hedging against
off-nominal conditions (uncertainty)

Reliability

Robustness Resilience
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IResiIience vs Robustness ¢y

* Robust systems are expected to satisfy (almost) the original
performance requirements during specific disturbances
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* Difficult/costly, appropriate for a small range of disturbances
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IResiIience vs Robustness ¢y
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* Rains are frequent * Severe crosswinds: occur
* Designed to be robust to less often, costly design
heavy rain (technically * A resilient response:
possible & cost-efficient) diverted to the nearest

suitable airport for
landing, take alternative
transports
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IReIiabiIity vs Resilience ? o
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* Reliability: not conditional on the sources of failure

Stochastic Ageing Probability;
and Dependence Staticice
for Reliability and

and

Reliability
for Engineers

Scientists

BABILITY AND STATISTICS

SYSTEM
RELIABILITY

MM 1(1) = P(T > 1)

MTTF = E[T]

WILEY

* Rely on the definition of failure v.s. non-failure

 Statistical & probabilistic methods

— high frequency events
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ISystem resilience

* Resilience to what is important!
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Functionally
equivalent, no
space for
resilience

Often the

same
Interpretation
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IReIiabiIity vs Resilience o

Component Simple system Single system

I . complexity

r

 Context becomes
Important, e.g.,
MTBF depends on
what level of failure is
deemed significant at
the aircraft level.

Highly reliable engine &  The distinction is one
resilient system design of degree
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IReIiabiIity vs Resilience
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Component

I complexity
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Slmple system Single system System of Systems

(

Non-trivial: multi-dimensional
performance, failure of which degree?

A extremely reliable system is impossible
/unrealistic

Additional design/operational guidance by
resilience to specific (HILF) events

Absolute protection — anticipatory
awareness, emergency planning, and
efficient recovery decisions

\
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N

QQ “Low”-frequency

high-impact with
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Log (disruption size)
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N Why reliability — resilience? &
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Il. How to build a resilient system / improve
its resilience?
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IEngineering system resilience ©
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* Mostly focus on conceptualization, metrics, and assessment
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* Ultimate goal: design and improve system resilience
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Multi-stage framework o
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For resilience improvement

Disruptive events
(e.g., nature hazards)

Short-run Emergency
Preparedness response

Strategic Recovery

planning planning
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Study 1: DRO-based coupling interface design for resilience

“A data-driven distributionally robust approach for the optimal coupling of
interdependent critical infrastructures under random failures”. European Journal of
Operational Research, under review

Study 2: DRL for post-event service restoration

“Exploiting deep reinforcement learning for power grid recovery planning with uncertain
repair time". IEEE Transactions on Smart Grids, under preparation
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Il. Coupling interface design for resilience &

COUPLING INTERFACE

> The ensemble of
interdependency links

> It defines how
interdependent systems
are coupled together

INTERDEPENDENCY
LINK
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DIFFERENT
BEHAVIOURS
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Research question &

* How to design the coupling interface between interdependent
network systems?

* Key challenges:
1) How to handle the (possibly deep) uncertainty of failure scenarios

2) Tractable models & effective solution methodologies?

12/7/2022 FANG @ RRCS Chair Day 23



Existing literature &
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Problem domain

> Most of the times the coupling interface is a given parameter
o Different interface designs not considered

> Network metrics-based coupling (e.g. [1]-[2])
o Degree, betweenness
o At best an “educated guess”

> Network metrics-based heuristics (e.g. [3]-[4])
o Global optimum not guaranteed

[11 Rueda. Diego F.. and Eusebi Calle. "Using interdependency matrices to mitigate targeted attacks on interdependent networks: A case study involving a power grid and backbone telecommunications
networks." International Journal of Critical Infrastructure Protection 16 (2017): 3-12.

[2] Guo. Hengdao. Samson S. Yu. Herbert HC lu. Tvrone Fernando. and Civan Zheng. "A complex network theory analytical approach to power system cascading failure—From a cyber-physical
perspective." Chaos: An Interdisciplinary Journal of Nonlinear Science 29, no. 5 (2019): 053111.

[3]1 Ouvang, Min, and Leonardo Duefias-Osorio. "An approach to design interface topologies across interdependent urban infrastructure systems." Reliability Engineering & System Safety 96, no. 11 (2011):
1462-1473.

[4] Winkler, James, Leonardo Duefias-Osorio, Robert Stein, and Devika Subramanian. "Interface network models for complex urban infrastructure systems." Journal of Infrastructure Systems 17, no. 4
(2011): 138-150.
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I Existing literature
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Optimization models for similar problems

Recourse function

/
SP : max Ep

xcX / \

Design Failure
variable scenario

> Probability distribution of the set
of feasible failure scenarios

> Difficult to estimate due to lack
of data, environment variability,
and rare events

RO : max min Q(x,u)
xeX uelU

N

Uncertainty set:
feasible failure
scenarios

> No need to estimate the
probabilities of failure scenarios

> Too conservative/costly
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SP

DRO

: max Ep|Q(x, u)]

xeX

. max [P min )]Ep O, ),

zeX |\Pe MU
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IProposed DRO approach c’)

* Ambiguity set
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U={u|ue{0,1}",|ull, >N -k}

MU)={PecPU): 0<E[l —u] < 7mae)

Set of multinomial distributions of the set of feasible
failure scenarios

Upper bound on the marginal probability of each line to
be failed

Risk-averse, but less conservative than RO
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ISqution strategy N

n K
BEX PEM(U) PQ(x,u)] Oz, u) = max b'h

st. Rh+Wdé<qg— Hx —Tu

Proposition 1: dual counterpart

max min Q(x,u) —|—Zﬁn — Uy, — T )

rxeX uceU
neN

Key observation: the support is a finite discrete set U = {u7 }5-]:1

Proposition 2: Equivalent monolithic MILP
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Decomposition strategy for solving the Equivalent monolithic MILP

?

[Solve outer layer master problem
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[ Solve inner layer master problem
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[ Solve inner layer subproblem ]

NO

Opt. gap. < 105 ?
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® Power network
B Gas network

I
00
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> Importance of the coupling interface design in ensuring
the robustness of interdependent networks

> DRO provides satisfying solutions
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Some results
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> RO solutions are suboptimal in terms of their expected performance in the

worst-case distribution P*

> SP solutions perform very poorly when tested under P*

12/7/2022
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I2. Post-event service restoration o
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% Depot

e High-Priority Load
-/ — Automatic Switch

—>&— Damaged Component

| 3§ 2
! 3¢

(Arif et al. 2018)

Question: how to schedule emergency & repair resources to
speed up service restoration at the post-disruption phase?
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IChaIIenges

e Typically modeled by ILP, MILP, MINLP
 Combinatorial nature v.s. highly time-critical in ex-post stage

* Proposed remedy: deep reinforcement learning

12/7/2022
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IThe DRL framework Gy
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ISome results e,

Trained DRL VS

Stochastic Optimization o4 )] - [ Jeb ey
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Out-of-sample scenarios

Near optimal performance with much less computational time

More stable out-of-sample performance
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IChaIIenges & perspectives o

N Problem domain

Solution robustness Efficient & scalable

Model validation

Dynamic / stochastic
interdependency

Multi-phases tradeoff

Multi-risks tradeoff

>
Algorithmic domain
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IUncertainty: robust satisficing ©

“Contentment is the Greatest Wealth.” - The Buddha

7\7 — min EPN [Q(wa g)]

xecX
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® ~a
max €
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s.t. Ep [Q(x,&)] < (1 4+ a)Qn,
VP € Py (€)
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IEx-post stage ..
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* Simulation-to-reality gap

P

A

RN i

Lk
Real physical system Simulated system model
. h y
T Action Action Reward Observations
v
b
Transfer
Greedy agent Learning agent o’.

— Distributional RL with risk-averse measures

* Trustfulness: RL & Numerical Optimization
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ITakeaway message N,

* System complexity and constant “surprises” call for resilience
e Multi-phase & multi-dimension

* Prescriptive methods (e.g., optimization, RL) provide promising
ways to go

* Many challenges remain: many exciting works to come!
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