

Robust and scalable prescriptive analytics for the resilience of interdependent networks

Yi-Ping Fang, HDR, Associate Professor

Chair on Risk and Resilience of Complex Systems

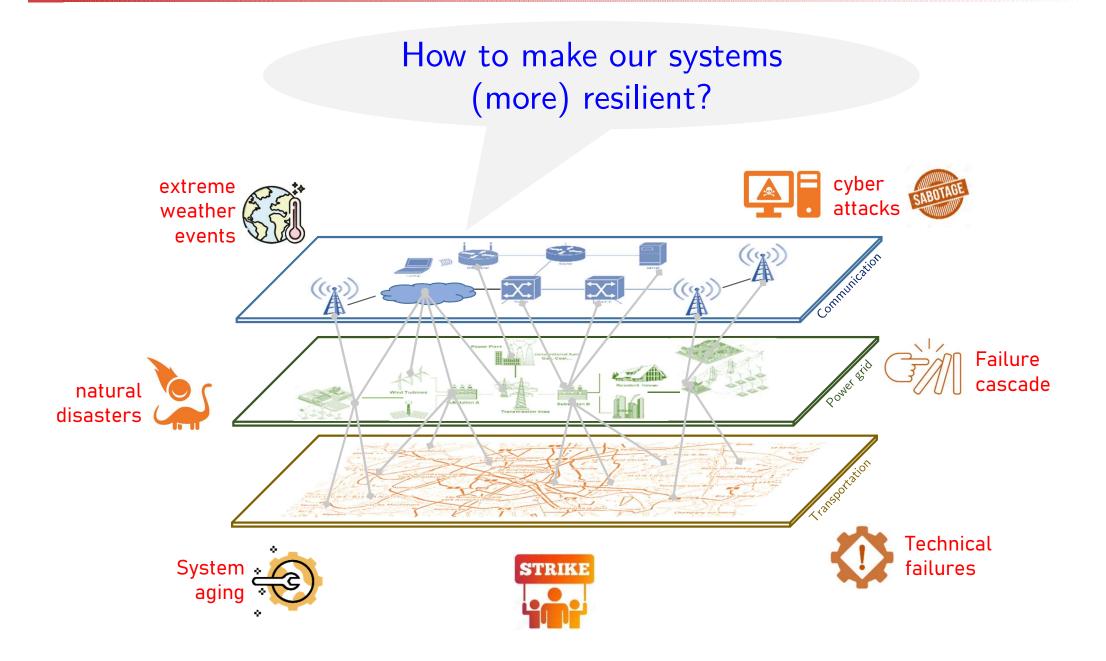
CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France

https://r3.centralesupelec.fr/

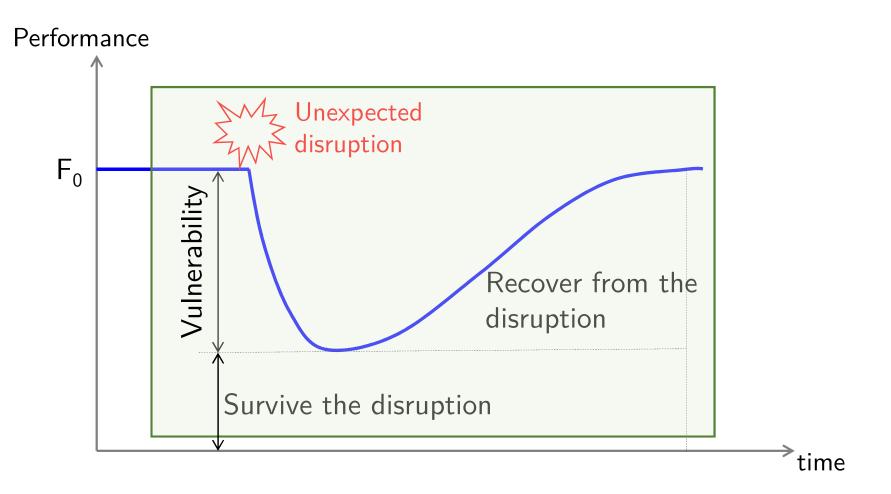
yiping.fang@centralesupelec.fr

RRCS Journée de Chaire, 27/09/2023

Interdependent networks & risk landscape

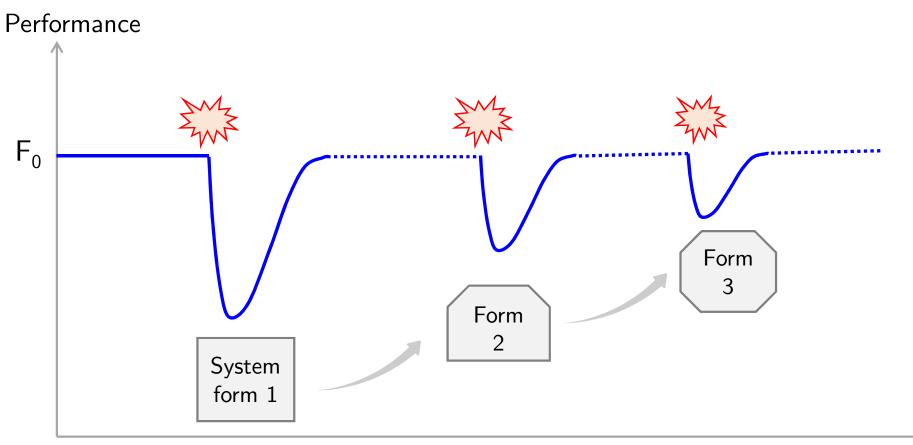


Resilience: symptom-wise



survivability + recoverability

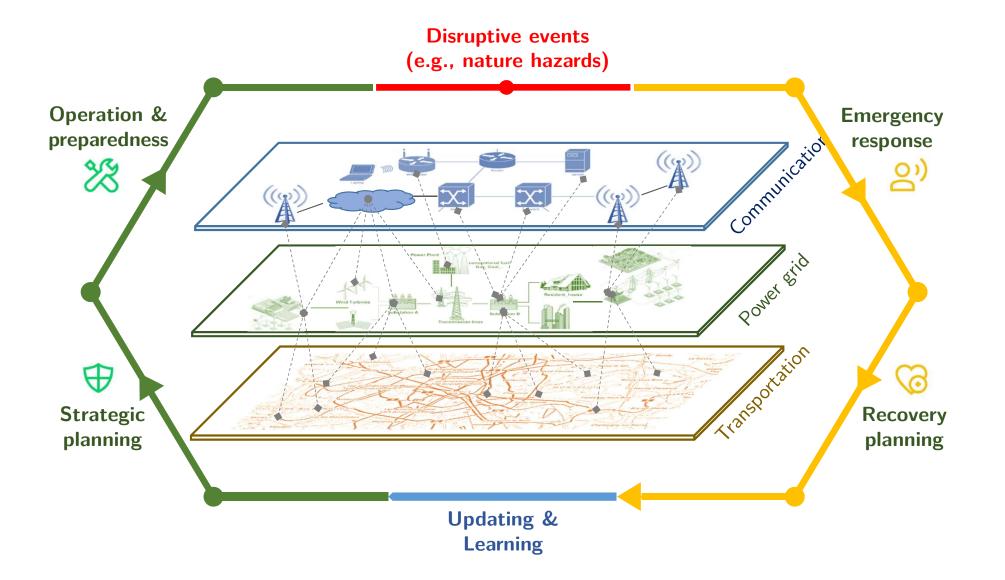
Resilience: symptom-wise



time

survivability + recoverability + adaptive/transformative capability

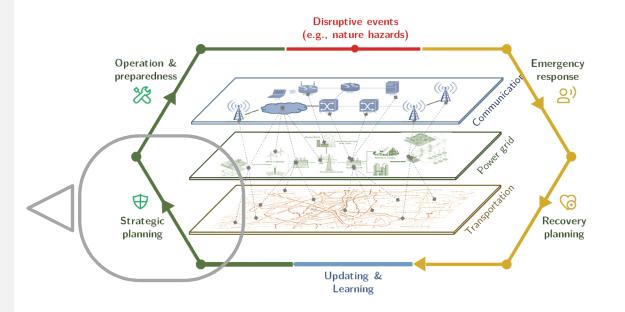
Resilience: prescription-wise



Strategic planning

Consider resilience when making decisions that have mid-/long-term effects?

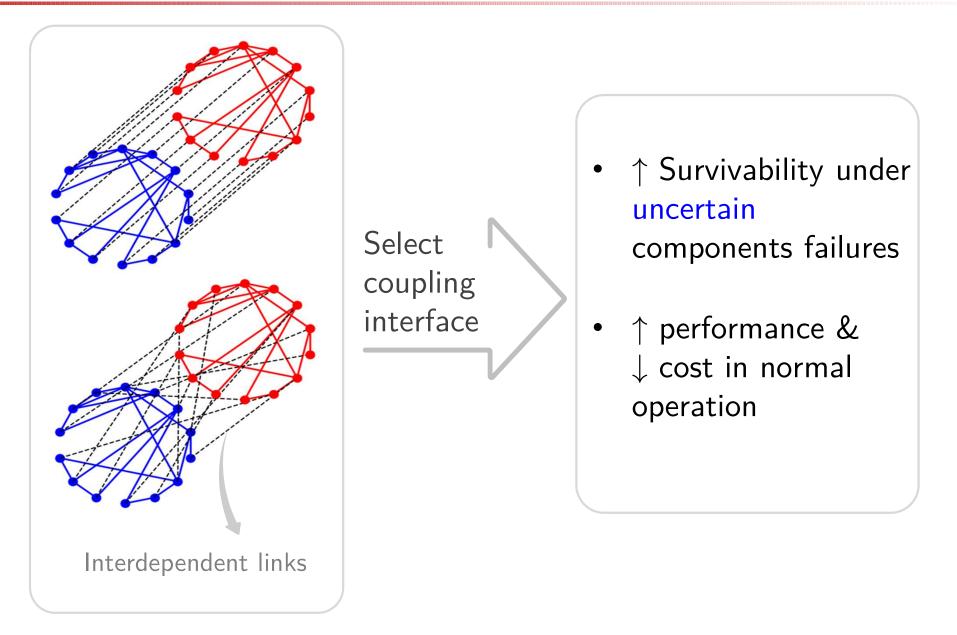
- \rightarrow structure (re)design
- \rightarrow integration of new techologies
- \rightarrow maintenance strategy



Decision-making under uncertainty, key challenges:

- \rightarrow deep uncertainty of future risk scenarios
- \rightarrow need of having robust solutions & computational tractability

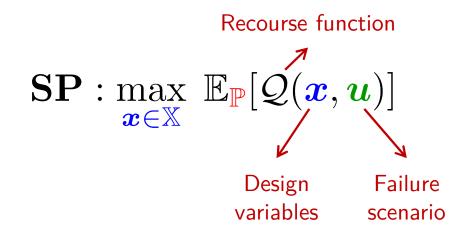
Example: coupling interface design



Bellè, A., Abdin, A. F., Fang, Y. P., Zeng, Z., & Barros, A. (2023). A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures. *European Journal of Operational Research*, *309*(2), 872-889.

Theoretical frameworks

Stochastic program (SP) & Robust optimization (RO)

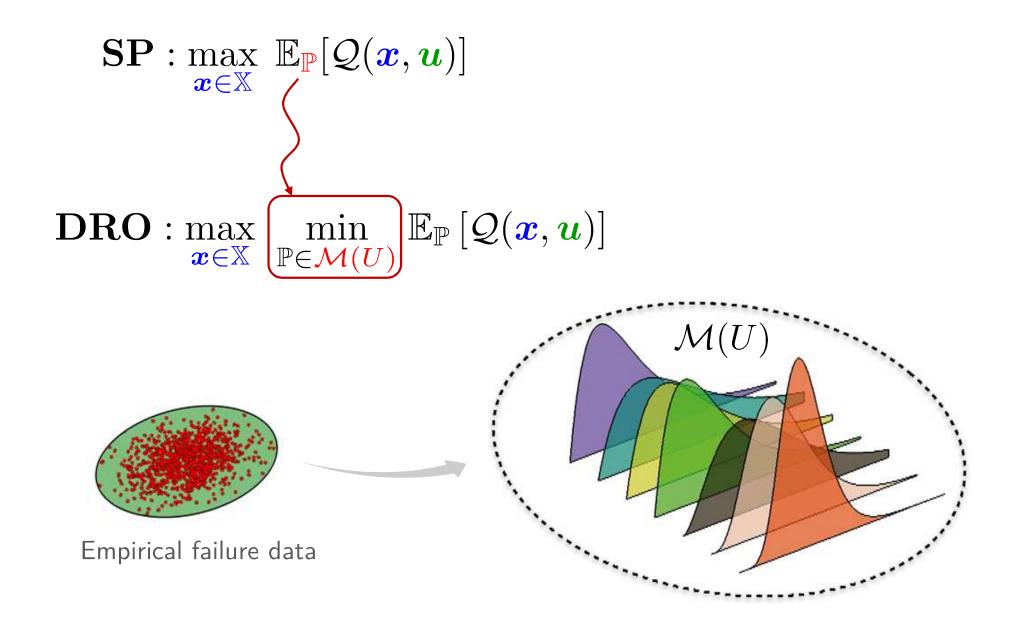


- Probability distribution of the set of all feasible failure scenarios
- Difficult to estimate due to lack of data & environment variability

 $\mathbf{RO}: \max_{\boldsymbol{x} \in \mathbb{X}} \min_{\boldsymbol{u} \in U} \mathcal{Q}(\boldsymbol{x}, \boldsymbol{u})$ Uncertainty set: all feasible failure scenarios

- No need to estimate the probabilities of failure scenarios
- ▷ Too conservative/costly

Distributionally robust approach



DRO approach

• Ambiguity set

$$\mathcal{M}(U) = \{ \mathbb{P} \in \mathcal{P}(U) : \mathbf{0} \le \mathbb{E}[1 - \mathbf{u}] \le \pi^{max} \}$$

$$U = \left\{ u \mid u \in \{0, 1\}^{N}, \|u\|_{1} \ge N - k \right\}$$

- Set of multinomial distributions on the set of feasible failure scenarios
- Upper bound on the marginal probability of component failure

DRO approach

for optimal coupling interface design of IPGNs

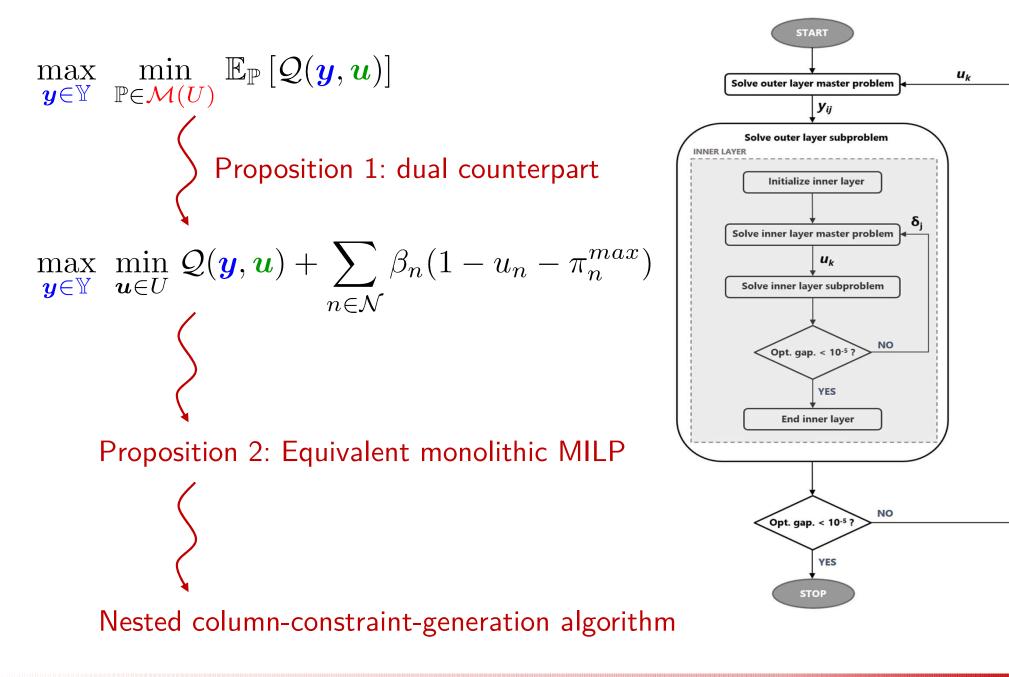


$$\sum_{\substack{i \in V_{GN} \\ j \in V_{PN}}} y_{ij}^1 d_{ij}^{km} c_{km}^1 + \sum_{\substack{i \in V_{PN} \\ j \in V_{GN}}} y_{ij}^2 d_{ji}^{km} c_{km}^2 \le B_c$$

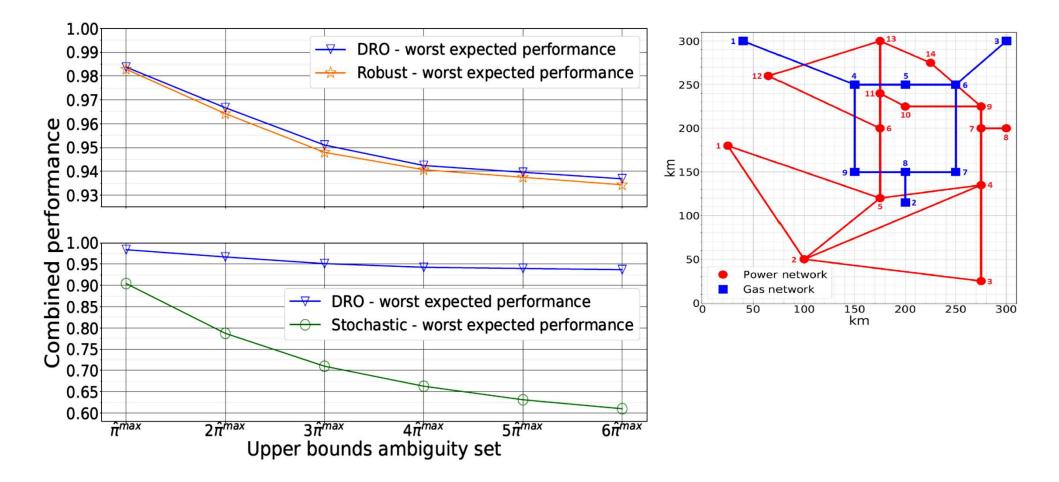
 $\mathbf{R}^{0}\mathbf{h}^{0} \leq \mathbf{q}^{0} - \mathbf{H}^{0}\mathbf{y} - \mathbf{W}^{0}\boldsymbol{\delta}^{0} - \mathbf{y}^{T}\mathbf{D}^{0}\boldsymbol{\delta}^{0} - \mathbf{y}^{T}\mathbf{G}^{0}\boldsymbol{\delta}^{0}\mathbf{c}^{0T}\mathbf{y}$

 $\mathbf{b}^T \mathbf{h^0} \geq 1$

Solution strategy



Key results



- \triangleright RO solutions are suboptimal in terms of their expected performance in the worst-case distribution \mathbb{P}^*
- $\,\triangleright\,$ SP solutions perform very poorly when tested under \mathbb{P}^{\star}

More studies

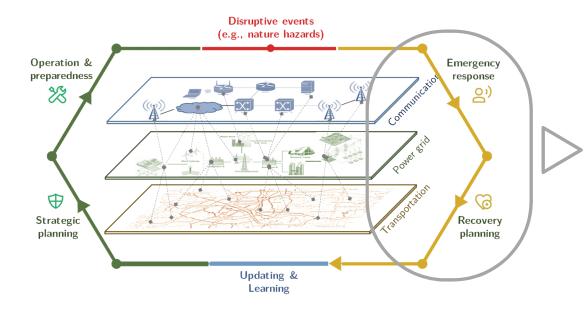
- Power grid protection investment with endogenous uncertainty Bellè, A., Fang, Y. P., Zeng, Z., & Barros, A. (2022). *IFAC-PapersOnLine*, *55*(16), 122-127.
- Optimal siting & sizing of DESs for grid resilience against wind storms

Yin, Z., Fang, C., Yang, H., Fang, Y., & Xie, M. (2023). Risk Analysis.

 Robust day-ahead flight planning in ATM considering extreme weather events

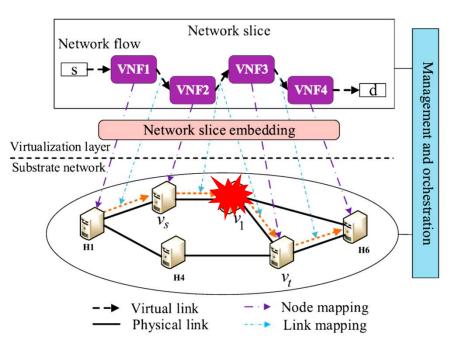
Hao, B., Cai, K., **Fang, Y. P.,** Fadil, A., & Feng, D. (2021, October). In *2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC)* (pp. 1-7). IEEE.

Emergency response & recovery planning

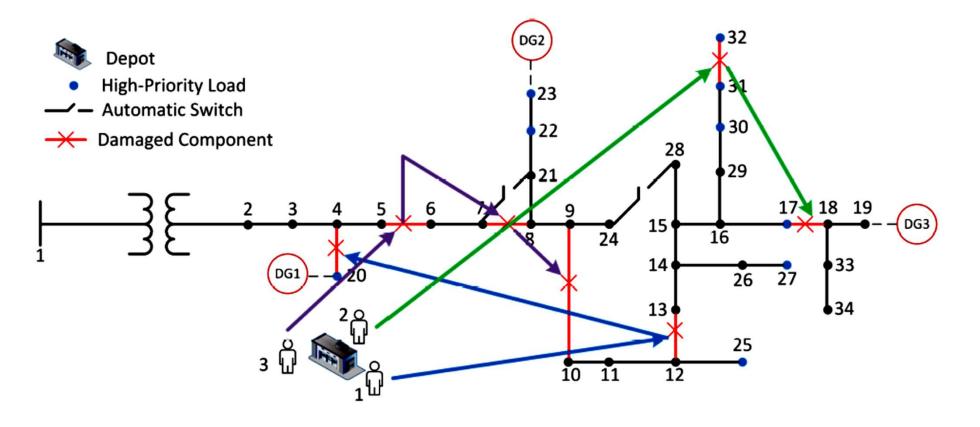


Mitigate service loss and speed up system recovery by leveraging flexibility/ maintenance resources

- Examples:
 - \rightarrow Reconfiguration of network slicing in 5G
 - \rightarrow Integrated reconfiguration and recovery in power distribution grids



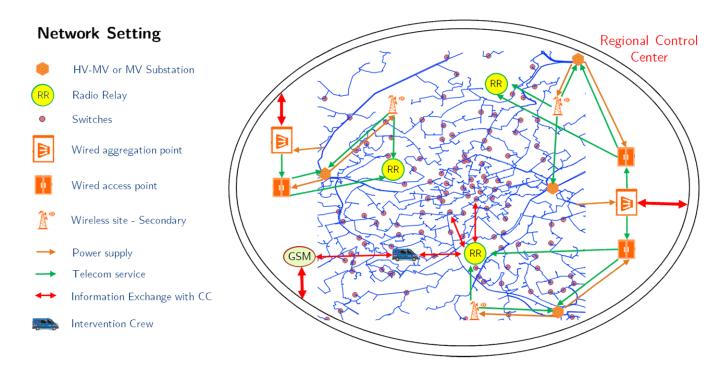
Example: distribution grid recovery



- Flexibility resources: automatic/manual switches \rightarrow control decisions), DGs \rightarrow allocation
- Maintenance resources: repair crews \rightarrow scheduling

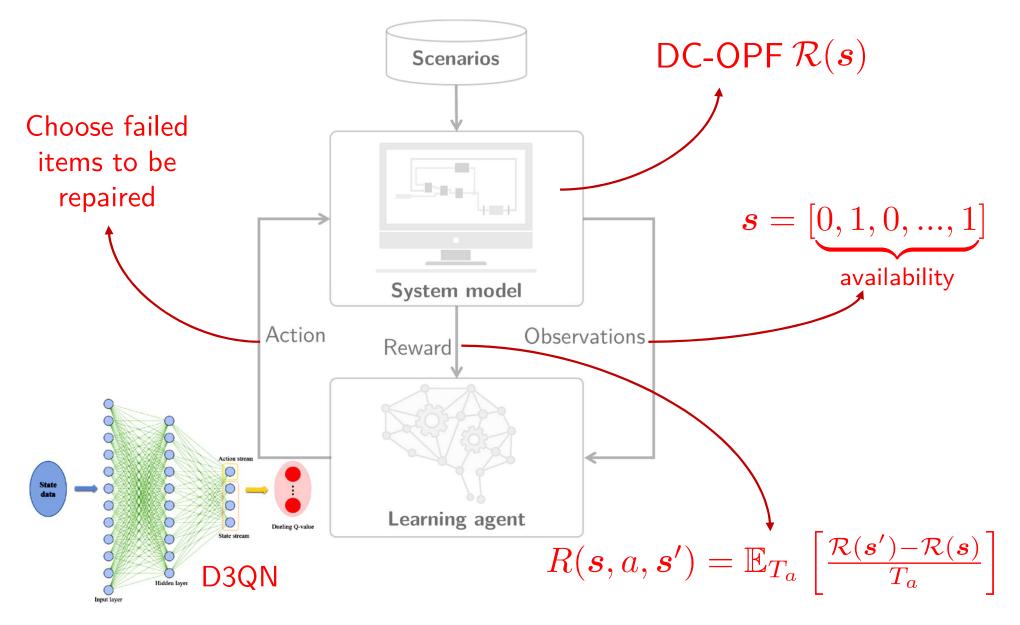
Modeling methods

• MILP for communication-aware restoration (Belaid et al. 2023)



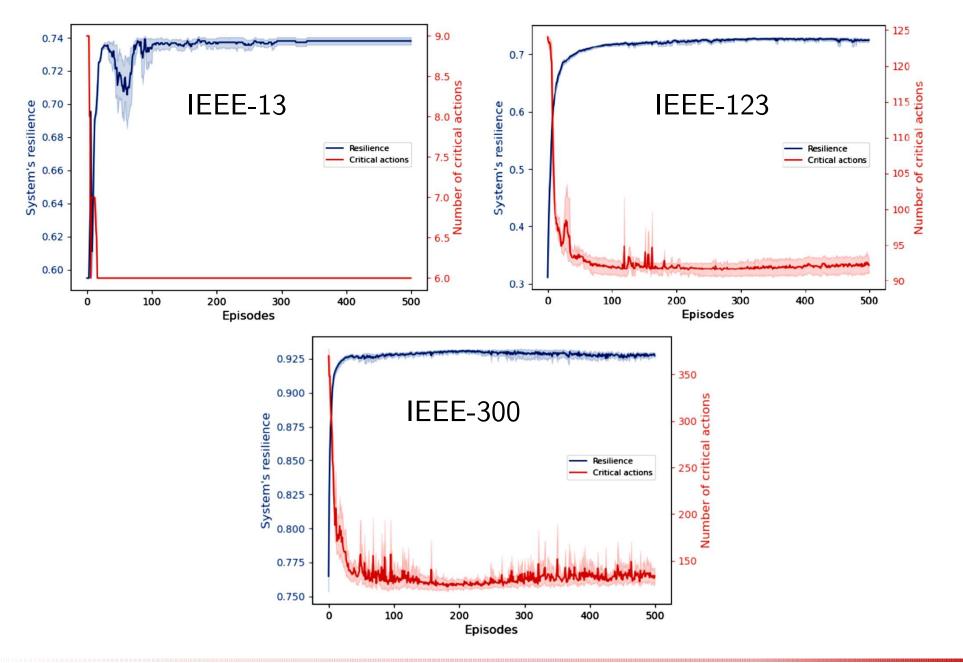
- Stochastic MILP to consider uncertain times of individual repair tasks (Fang and Sansavini, 2019)
- Key challenge: combinatorial nature v.s. highly time-critical in ex-post stage \rightarrow scalable method

DRL for scalability



Z.-Y. Yin, C. Fang, Y.-P. Fang, M. Xie. (2023) "An optimization-driven deep reinforcement learning framework for distribution grid recovery planning with large action space"

FANG @ RRCS Chair Day



Trained DRL (D3QN & DDQN) vs. SO

Failure scenario	System	Method	Average CR	Time
50% damaged	13-node	D3QN	85.29%	<1s
		DDQN	85.29%	<1s
		SO	89.29%	<1s
	123-node	D3QN	76.72%	1.06s
		DDQN	75.79%	1.71s
		SO	74.98%	1h
	300-node	D3QN	95.25%	5.13s
		DDQN	93.79%	5.32s
		SO	None	None

▷ Near optimal performance with much less computational time

II. Ongoing projects and opportunities

Ex-ante prescriptive analysis

Pascal Quach

Stochastic optimization for the resilience of networked infrastructures against climate change, ANR JCJC Thesis

- Integrate historical & predicted data
- Compare/unify different approaches: RO & DRO & Robust Satisficing
- Develop tailored model & algorithm for energy systems (and other systems?)

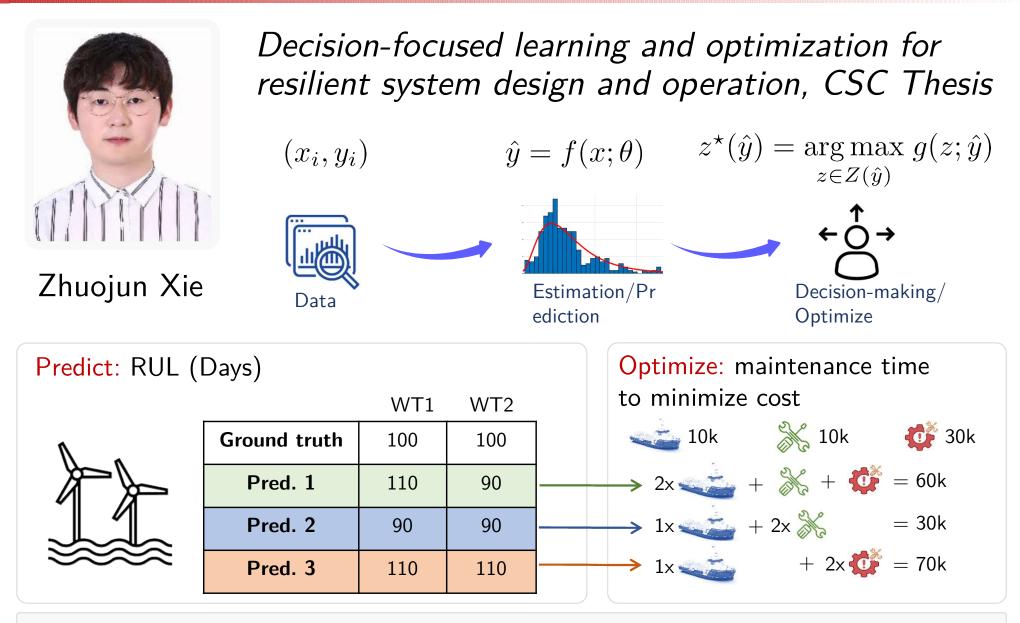
$$\mathcal{Q}_{N}^{\star} = \min_{\boldsymbol{x} \in \mathbb{X}} \mathbb{E}_{\mathbb{P}^{N}} \left[\mathcal{Q}(\boldsymbol{x}, \boldsymbol{\xi}) \right]$$

$$\downarrow \qquad (1 + \alpha) \mathcal{Q}_{N}^{\star}$$

$$\max_{\boldsymbol{x} \in \mathbb{X}} \boldsymbol{\epsilon}$$

s.t. $\mathbb{E}_{\mathbb{P}} \left[\mathcal{Q}(\boldsymbol{x}, \boldsymbol{\xi}) \right] \le (1 + \alpha) \mathcal{Q}_{N}^{\star},$
 $\forall \mathbb{P} \in \hat{\mathcal{P}}_{N}(\boldsymbol{\epsilon})$

Ex-ante prescriptive analysis



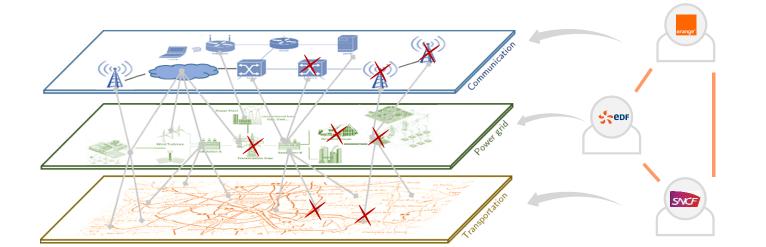
Decision awareness in learning could be of high value!

Ex-post prescription

Modelling aspects:

- Failure state not fully known, e.g., blocked/ damaged roads / failure in dependent systems; Exploration takes resources (e.g., drone inspection)
- Decentralized response & recovery planning with multiple operators

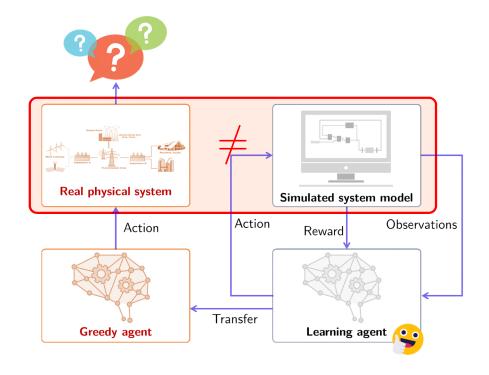
FANG @ RRCS Chair Day



Ex-post prescription

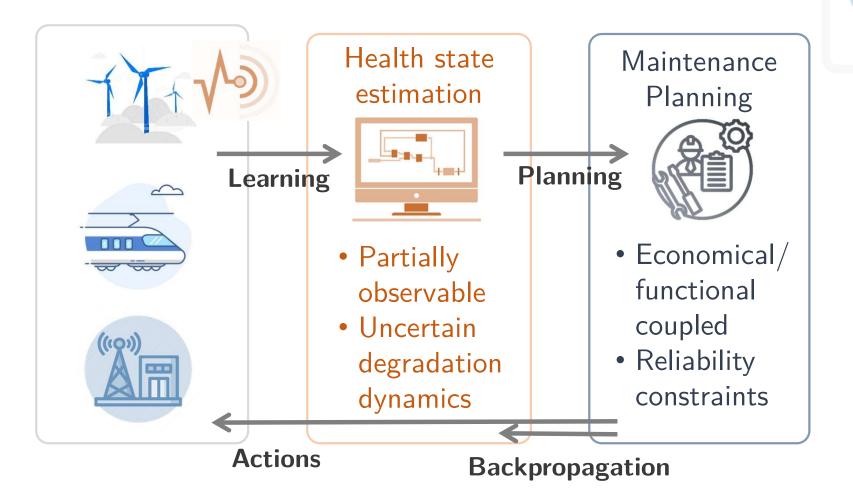
Algorithmic: learning robustness and interpretability

- Trustfulness in DRL
 - → Simulation-to-reality gap: distributional RL with riskaverse (Dulac-Arnold et al. 2019)
 - → *Safety*: constrained DRL incorporating domain-expert knowledge in training (Corsi et al. 2022)
 - Interpretability:
 - \rightarrow More interpretable model in RL, e.g., tree, rule-based
 - \rightarrow Visualization, attention/saliency maps...



Updating and learning

Integrated machine learning and optimization for dynamic decision-making in continuously monitored systems, RRCS Chair Thesis, 10/2023



CentraleSupélec

Zehui Xuan

Opportunities

• Systemic roadmaps to map from symptoms to prescriptive actions?



• Resilience cost models: cost sharing/allocation

Thanks for your attention!

Chair Risk and Resilience of Complex Systems

