orange

Chair Risk and Resilience of Complex Systems Annual Scientific Seminar Talk 6 (Industrial partner Orange)

Resilient railway 5G network : service availability and reliability assessment

Presenter: Rui Li

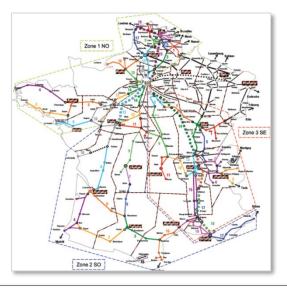
Supervisors: Bertrand Decocq (Orange Innovation) Anne Barros, Yiping Fang, Zhiguo Zeng (CentraleSupélec)

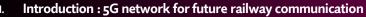
28 Sep 2023

Resilient railway 5G network : service availability and reliability assessment **Table of contents**

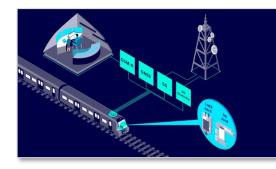
Introduction : 5G network for future railway communication

Modeling : continuous connection for high mobility users


Simulation : an interactive availability & reliability assessment


Conclusion : how far are we from reality ?

ange⁻ Chair Risk and Resilience of Complex Systems Annual Scientific Seminar


Introduction From GSM-R to 5G-R or FRMCS

Built for Railway, GSM-R networks are the most reliable mobile networks currently in existence.

- Modeling : continuous connection for high mobility users Simulation : an interactive availability & reliability assessment
- Conclusion : how far are we from reality?

GSM-R networks will start to be life-expired by 2030.

Future Railway Mobile Communication System (FRMCS): to usher in 5G.

Strategic Plan for FRMCS Introduction

Rémi Bévot, Olivier Labourdette(2010, January). GSM-R in France.[Online available] https://www.globalrailwayreview.com/article/4247/gsm-r-in-france/. UIC (2020, December). FRMCS and 5G for rail: challenges, achievements and opportunities. Publication of UIC rail system department. [Online available] https://uic.org/IMG/pdf/brochure frmcs v2 web.pdf.

•••••

Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users
- II. Simulation : an interactive availability & reliability assessment
- v. Conclusion : how far are we from reality ?

From RST in GSM-R to various use cases expected in 5G networks

	Characteristic parameters				Influence parameters						
Use case	Communi- cation service availabi- lity: target value (note 1)	Commu- nication service reliability: mean time between failures	End-to- end latency: maximum (note 2)	Service bit rate: user experienced data rate	Commu- nication pattern	Message size	Transfer interval: target value	Survival time	UE speed	# of UEs	Service area (note 3)
1: Control of automated train (note 4)	99,999 %	below 1 year but >>1 month	<100 ms	≥200 kbit/s	periodic deter- ministic	≤200 byte	100 ms	~500 ms	≤160 km/h	<25	50 km x 200 m
2: CCTV com- munication service for surveillance cameras (note 4)	>99,99 %	~1 week	<500 ms	≥2 Mbit/s	aperiodic deter- ministic			~500 ms	≤160 km/h	<25	50 km x 200 m
3: Emergency voice call (note 4)	>99,99 %	~1 day	<200 ms	≥200 kbit/s	aperiodic deter- ministic			~2 s	≤160 km/h	<25	50 km x 200 m
4: Train coupling	>99,9999 %	~1 year	<100 ms	1 Gbit/s	mixed traffic			~500 ms	- (note 5)	2	3 m x 1 m
5: CCTV offload in train stations				≥1 Gbit/s	non- deter- ministic				~0 km/h	≥1	train station

Table of KPIs of communication service performance requirements for rail-bound mass transit.

Availability : Up to 99.9999% Reliability : More than 1 year

Scenarios:

- Automated train
- Train coupling
- Video/voice communication

Environment and context:

- Speed: 160 km/h (mass transit) – 500 km/h (high-speed)
- Surroundings:
 Tunnel & mountain environment
- End users:

Train(s), passengers, control center

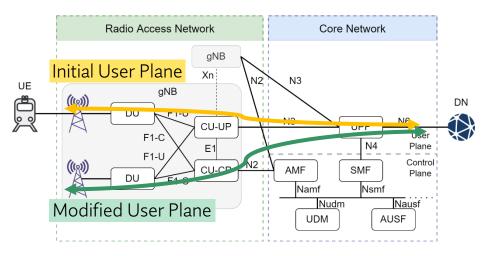
Traffic pattern:
 Nondeterministic

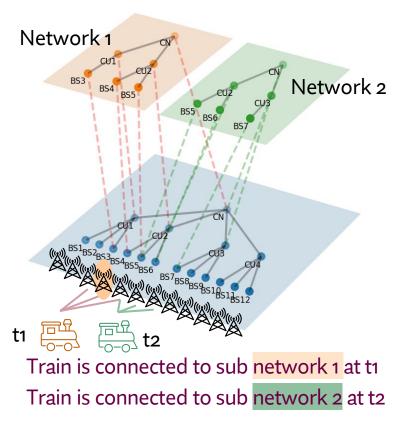
3GPP (2022, May). LTE; 5G; Mobile communication system for railways (3GPP TS 22.289 version 17.0.0 Release 17)

•••••

nge Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

Introduction Communication system architecture


- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users Simulation : an interactive availability & reliability assessment
- Conclusion : how far are we from reality ?

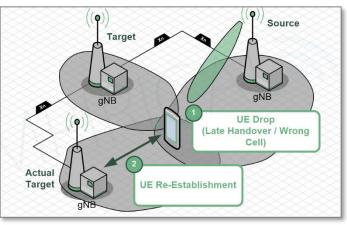

.....

5G for railway communication service mainly relies on the User Plane.

((v)) A

But the User Plane is no longer static.

Chair Risk and Resilience of Complex Systems Annual Scientific Seminar


Introduction **Resilient 5G network for train**

- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users Simulation : an interactive availability & reliability assessment
- Conclusion : how far are we from reality ?

1st challenge: resilient session Handover (HO)

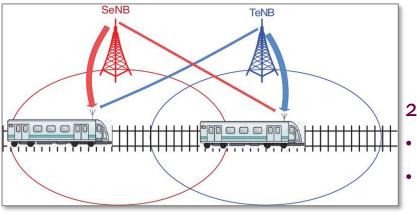
- Modeling of Control Plane HO process
- Interaction with User Plane

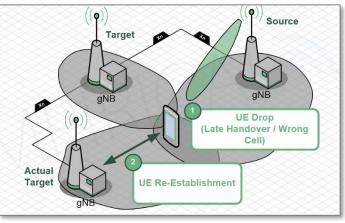
2nd challenge: connection Re-establishment (RE) Modeling of Control Plane RE process

Simulation on service failure and recovery

Amin Sadrabadi, H,, N. Ardalani, H., Bakhshi (2022, April). An enhanced LTE handover scheme for high-speed railway application. Trans Emerging Tel Tech. 2022; 33(4):e4404a. Nugent P. (2022, October). Minimizing Handover Failures in 5G. [Online Available] https://www.mpirical.com/blog/minimizing-handover-failures-in-5g

.....


Chair Risk and Resilience of Complex Systems Annual Scientific Seminar



Introduction : 5G network for future railway communication Modeling : continuous connection for high mobility users Simulation : an interactive availability & reliability assessment Conclusion : how far are we from reality ?

1st challenge: resilient session Handover (HO)

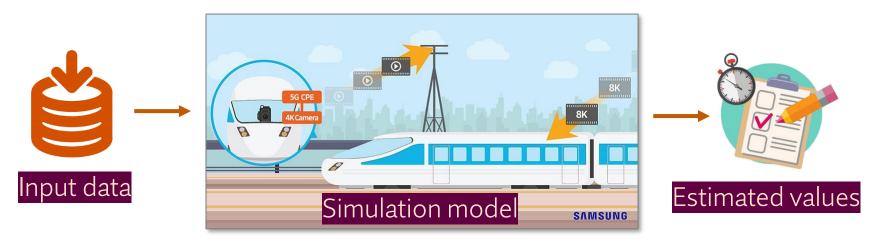
- Foreseeable (triggered by distance/power)
- Keeping the continuity of service (+Reliability + Availability)

2nd challenge: connection Re-establishment (RE)
Passive action (when losing connection)

Decreasing down time of service (+Availability)

Amin Sadrabadi, H, , N. Ardalani, H., Bakhshi (2022, April). An enhanced LTE handover scheme for high-speed railway application. *Trans Emerging Tel Tech*. 2022; 33(4):e4404a.

Nugent P. (2022, October). Minimizing Handover Failures in 5G. [Online Available] https://www.mpirical.com/blog/minimizing-handover-failures-in-5g


nge[:] Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

Modeling Problem statement

- Introduction : 5G network for future railway communication
- II. Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?

Objective : estimate network service availability and reliability

- Elements
- Behaviors
- Model
- Metrics

Modeling **Model elements**

Introduction : 5G network for future railway communication •••••

- Modeling : continuous connection for high mobility users
- Simulation : an interactive availability & reliability assessment
- Conclusion : how far are we from reality ?

Objective : estimate network service availability and reliability

Elements

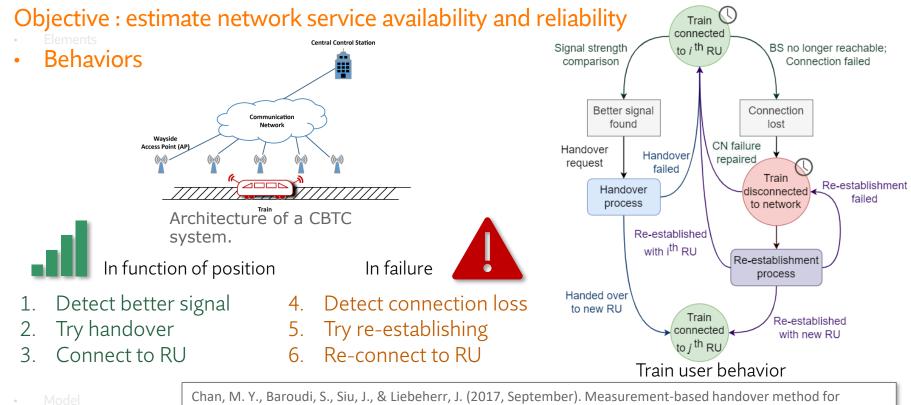
The train(moving end-user)

In Radio Access Network:

- Radio Unit (physical equipment)
- Distributed Unit(Server + Microservices)
- Centralized Unit(Server + Microservices)

In Core Network:

- Aggregated centralized physical resource
- AMF(Microservices)
- SMF(Microservices)
- **UPF(Microservices)**


...

CN AUSF UDM Data SMF UPF AMF Network gNB aNB CU-CP CU-UP CU-CP CU-UP DU DU DU DU RU 1 RU 2 **RU 3** RU 4 ((+)) Single RU Overlapping Single RU Overlapping Single RU Overlapping Single RU initial position position at time t 9)

Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

- Introduction : 5G network for future railway communication
- II. Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment

IV. Conclusion : how far are we from reality ?

......

Metrics

Chan, M. Y., Baroudi, S., Siu, J., & Liebeherr, J. (2017, September). Measurement-based handover method for communication-based train control systems. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1-6.

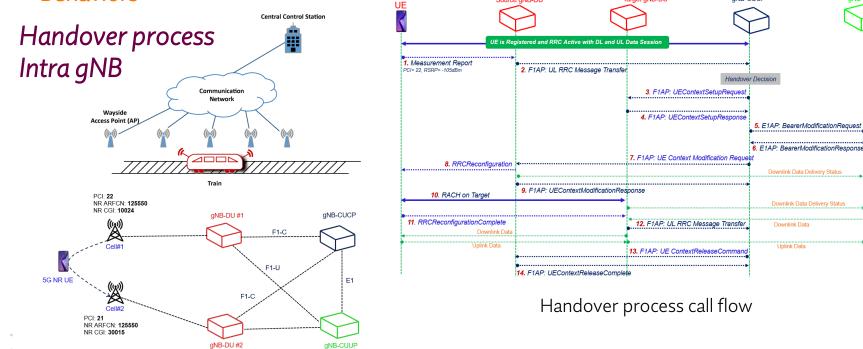
ange[,] Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

Introduction : 5G network for future railway communication

- II. Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment

Target gNB-DU

aNB-CUCP


IV. Conclusion : how far are we from reality ?

Source aNB-DU

Objective : estimate network service availability and reliability

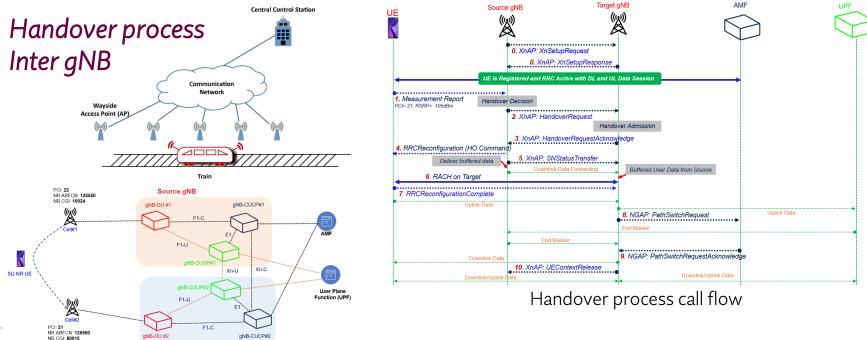
.....

- Elements
- Behaviors

......

ange[®] Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

Resilient railway 5G network : service availability and reliability assessment **aNB-CUUF**


Introduction : 5G network for future railway communication

- II. Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?

Objective : estimate network service availability and reliability

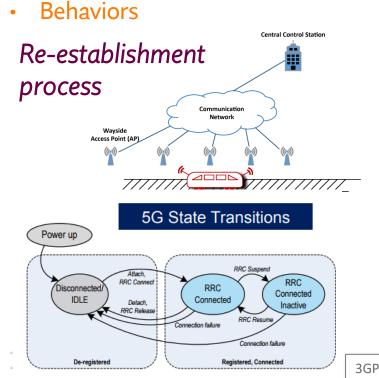
.....

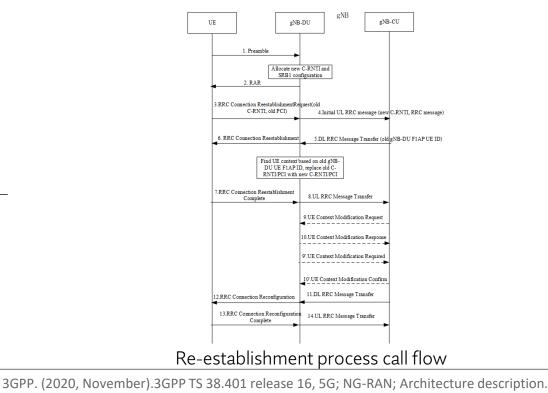
- Elements
- Behaviors

.....

Target gNB

Introduction : 5G network for future railway communication


- . Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?

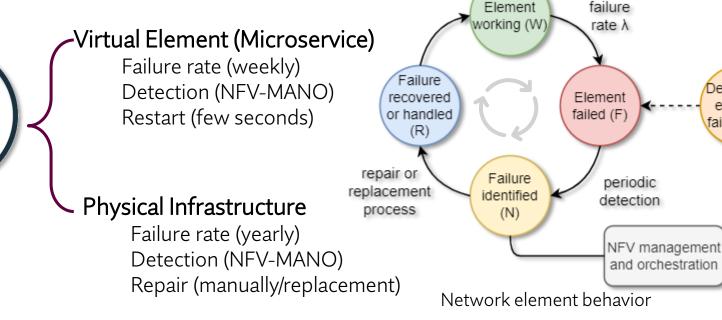

Objective : estimate network service availability and reliability

.....

.....

Elements

ange^r Chair Risk and Resilience of Complex Systems Annual Scientific Seminar


Modeling <u>Modeling</u> <u>Modeling</u>

Introduction : 5G network for future railway communication

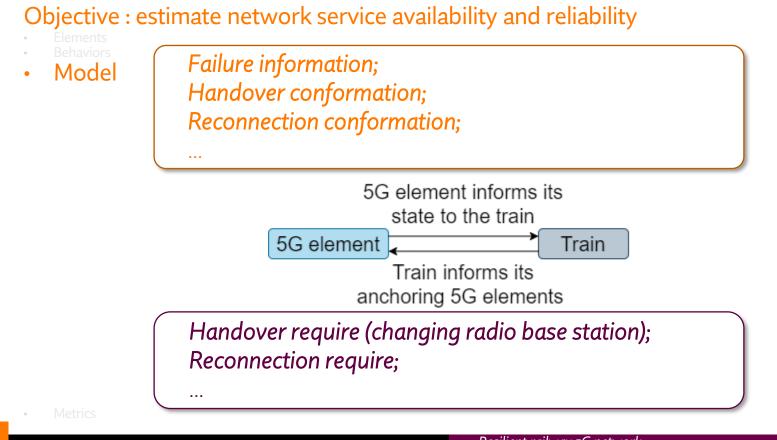
- Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?

Objective : estimate network service availability and reliability

- Elements
- Behaviors

......

Dependent


element

failed (DF)

Introduction : 5G network for future railway communication

- Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?

ange[®] Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

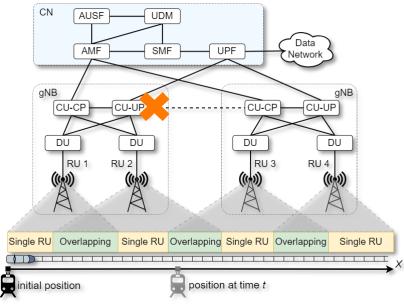
Modeling Metrics

Introduction : 5G network for future railway communication

- Modeling : continuous connection for high mobility users
- Simulation : an interactive availability & reliability assessment
- Conclusion : how far are we from reality ?

Objective : estimate network service availability and reliability

- Metrics



Providing connection to the train 7d x 24h wherever the train locates. Offering more than consumers expect.

Network availability: the value of the amount of time the operator can provide end-to end (E2E) service everywhere by using the deployed network, divided by the total time.

Network reliability: the ability of the network to continuously provide E2E connection everywhere in a considered area.

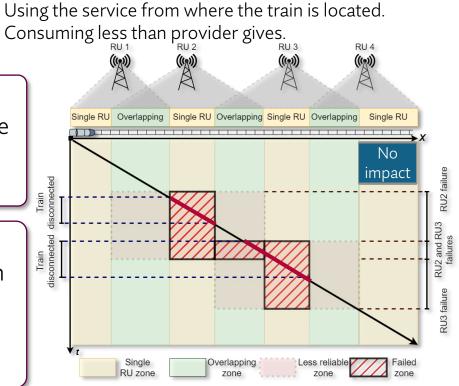
We measure network reliability using the Mean Time To Failure (MTTF) of the network system.

Modeling Metrics (continued)

iii intr

- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?

Objective : estimate network service availability and reliability

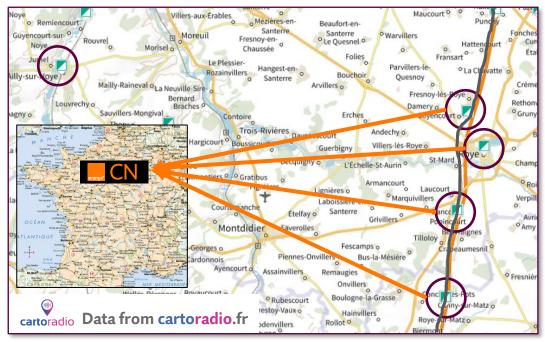

- Elements
- Behaviors
- Mode
- Metrics

Train network communication service availability: the value of the amount of time the E2E communication service is delivered, divided by the amount of time.

Train network communication service reliability: the ability of the communication service to perform as required for a given time interval.

We describe it with MTTF of the service.

Chair Risk and Resilience of Complex Systems Annual Scientific Seminar



Simulation **Railway communication network**

- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users Simulation : an interactive availability & reliability assessment
- Conclusion : how far are we from reality?

.....

Current GSM-R positions along the railway

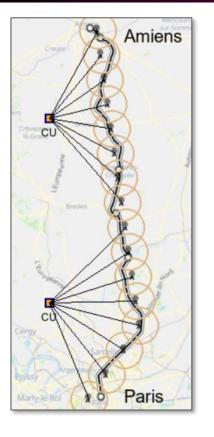
Radio Base Station along the railway

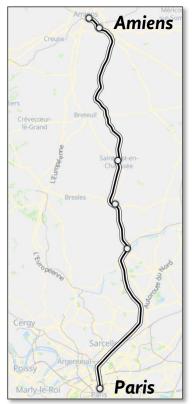
Distribution of Base Station:

- From 1 km to 10 km
- Environment information is missing

Covering area

- Some locations can be covered by 2/3+ base station (intersection)
- Some locations has no gNB redundancy (rural, less frequent line.) \rightarrow Economical aspect: decide when turning on


Simulation Railway use case


Lange and	 	L

- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users Simulation : an interactive availability & reliability assessment III.
- Conclusion : how far are we from reality ?

Parameter	Interval	Value	
Nb of RU/DU	6-100	16	
Cover radius	1-10 km	5 km	
Nb of CU	1-20	2	
Redundancy			
. DU server	0-2	0	
CU standby	0-2	0	
CN standby	0-2	0	
Speed	50-500 km/h	200 km/h	

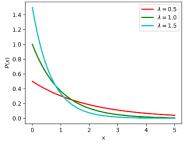
A rail line between Amiens Paris about 100 km

Itinerary Paris $\leftarrow \rightarrow$ Amiens

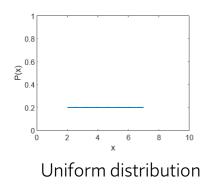
Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

Simulation Communication failures

- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality?


.....

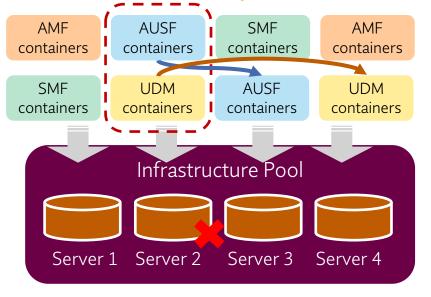
Stochastic events


- Physical infrastructure failure
 - Exponentially distributed failure time
 - Randomly detect + fixed repair time (long)
- Virtual component failure
 - Exponentially distributed failure time
 - Randomly detect + Fixed repair time

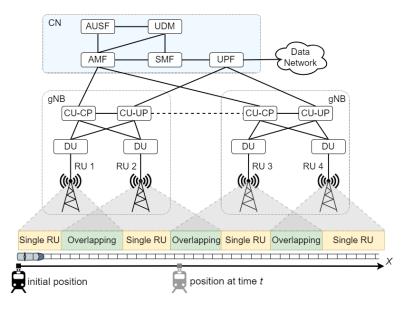
Designated events

A designated failure at a designated time

Exponential distribution



Simulation Example of failures - 1


(mm)			
		 	

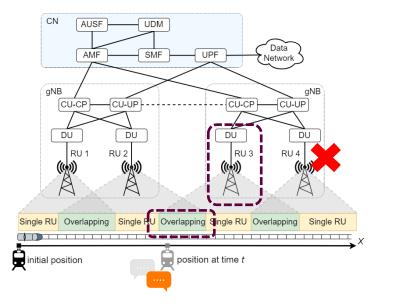
- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?

Failure without impact

Anti-affinity strategy save the network from failure

nge[®] Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

Simulation

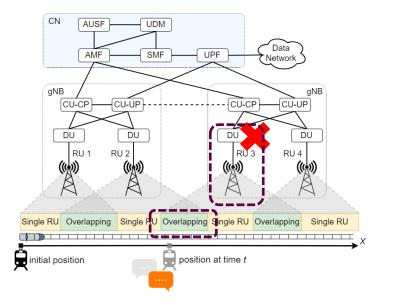

Introduction : 5G network for future railway communication

- Modeling : continuous connection for high mobility users
- Simulation : an interactive availability & reliability assessment
- Conclusion : how far are we from reality ?

•••••

Failure only impacting network (not user)

- Train at time t, running in zone 4 and it is connected to • RU3
- RU4 fails, as a result, Orange cannot provide service to • zone 7
- The failure of RU4 does not impact train service •
- The failure of RU4 will not impact train service if • repaired before train getting into zone 7

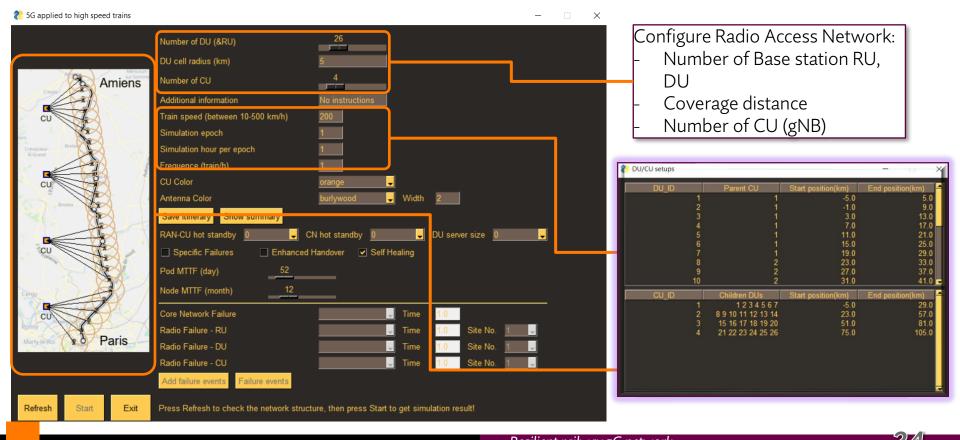


Introduction : 5G network for future railway communication

- . Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?

Failure impacting both network and service

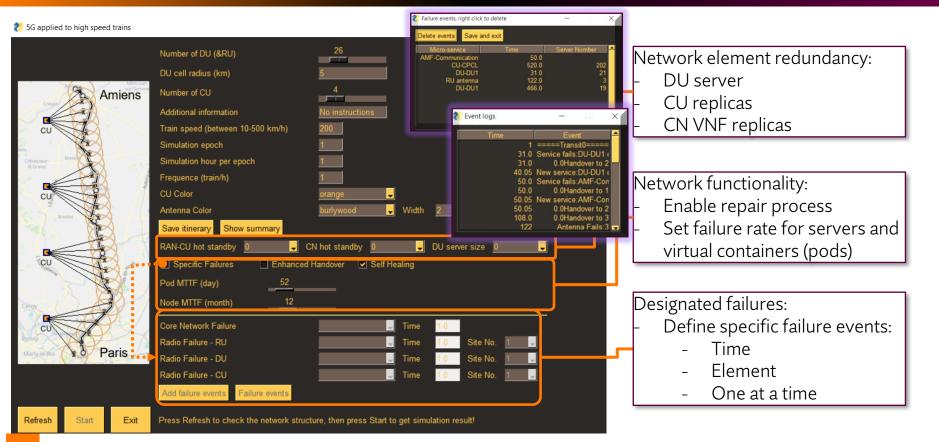
- Train at time t, running in zone 4
- DU3 fails, Orange fails to provide network in zone 5
- If the train is connected to RU2
 - The Handover process will not be done
- If the train is already attached to RU3 before failure
 - The connection ends and UE try to re-establish a connection using RU 2



Simulation **Demonstration**

. Introduction : 5G network for future railway communication

- Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?



range[•] Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

Simulation **Demonstration**

- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users
- II. Simulation : an interactive availability & reliability assessment
- v. Conclusion : how far are we from reality ?

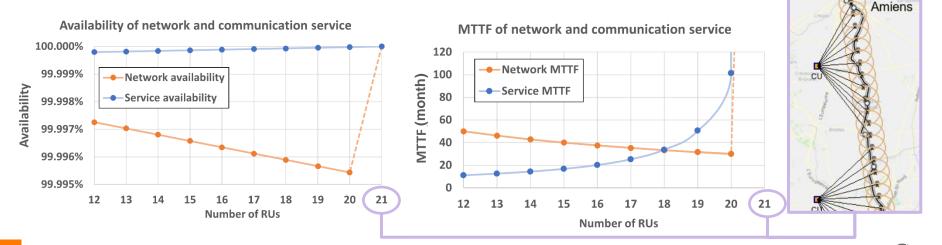
nge⁻ Chair Risk and Resilience of Complex Systems Annua<u>l Scientific Seminar</u>

- Introduction : 5G network for future railway communication
- Modeling : continuous connection for high mobility users Simulation : an interactive availability & reliability assessment

Single RU Overlapping Single RU Overlapping Single RU Overlapping Single RU

position at time t

22(0)


Conclusion : how far are we from reality ?

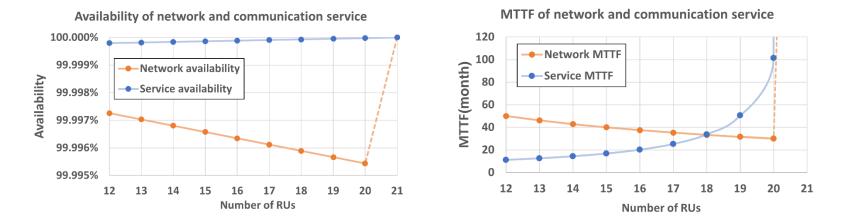
initial position

Random element failure only on RU

Network availability decreases with number of RU (until fully redundant)

- Number of single connection zone increases
- Service availability increases with number of RU
 - Overlapping zone area increases

Chair Risk and Resilience of Complex Systems Annual Scientific Seminar


Introduction : 5G network for future railway communication

- Modeling : continuous connection for high mobility users Simulation : an interactive availability & reliability assessment
- Conclusion : how far are we from reality ?

Random element failure only on RU

Network reliability decreases with number of RU (until fully redundant)

- Number of single connection zone increases
- Service reliability increases with number of RU
 - Overlapping zone increases, MTTF increases

Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

Simulation **Results**

Introduction : 5G network for future railway communication

- Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- v. Conclusion : how far are we from reality ?

service availability and reliability assessment

Resili

Random failure everywhere in the network Handover and Re-establishment are considered

- Network availability decreases with number of
 - Due to failure caused by increasing number of single connection area
- Service availability increases with number of RU
 - Thanks to re-establishment and handover
- Network reliability decreases with number of RU
 - Failures happen more frequently
- Service reliability <u>decreases</u> with number of RU
 - Service interrupted due to failure caused by increasing number of elements

ange[,] Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

	Network availability	Network MTTF (hours)	Service availability	Service MTTF (hours)	
12	99.86058%	55	99.99456%	359	
13	99.84895%	52	99.99512%	344	
14	99.83789%	50	99.99571%	333	
15	99.82612%	48	99.99628%	319	
16	99.81485%	46	99.99686%	308	
17	99.80219%	44	99.99742%	298	
18	99.79151%	42	99.99801%	288	
19	99.78031%	41	99.99859%	279	
20	99.76875%	39	99.99917%	270	
RU 1	RU 2	(RU 3 RU	4	
RU Overlappi	ng Single RU Ov	erlapping Sing	le RU Overlapping	Single RU	
al position					
ailway 5G network : 20					

. Introduction : 5G network for future railway communication

I. Modeling : continuous connection for high mobility users

III. Simulation : an interactive availability & reliability assessment

IV. Conclusion : how far are we from reality ?

- A more complicated scenario combined both Control Plane & User Plane is considered
- Perspectives from provider and consumer on availability and reliability are compared
- A platform is built for investigating the impact of network structure on network performance

Degrading and maintenance process:

Physical device may have aging process with a changing failure rate

Grouped maintenance can be considered

Environment Challenges:

Radio signal power can be largely reduced inside a tunnel, in mountain area, or on rainy days

High speed Challenges:

Time to carry out a handover may be short, the HO process can be disturbed

Introduction : 5G network for future railway communication

- I. Modeling : continuous connection for high mobility users
- III. Simulation : an interactive availability & reliability assessment
- IV. Conclusion : how far are we from reality ?

Railway scenario meets 5G

In 2021, SNCF designed ecosystem with over thirty 5G usages: autonomous train, real-time station surveillance, temporary hotspots...

330

5G and 6G are on the route...

SNCF Numérique. (July 2021) Télécoms : SNCF explore les usages de la 5G dans son écosystème. [online]https://numerique.sncf.com/actualites/telecoms-sncf-explore-les-usages-de-la-5g-dans-son-ecosysteme/

ge Chair Risk and Resilience of Complex Systems Annual Scientific Seminar

Orange Innovation

Rui Li rui.li@orange.com Bertrand Decocq bertrand.decocq@orange.com

CentraleSupélec

Laboratoire Génie Industriel

Team R³

Anne Barros

anne.barros@centralesupelec.fr

Yiping Fang

yiping.fang@centralesupelec.fr

Zhiguo Zeng

zhiguo.zeng@centralesupelec.fr