

Chair Risk and Resilience of Complex Systems http://rrcs.centralesupelec.fr/en

> Annual Scientific Seminar November 17th 2022

Introduction Anne Barros – Head of the chair

CentraleSupélec

• 3 permanent members: Anne Barros, Yiping Fang, Zhiguo Zeng

- 1 associate member: David Coit Rutgers University USA
- 2 PHD students: Andrea Bellè, Matthieu Roux
- CentraleSupélec students
- Master students

edf SCIENCE & ENSEIGNEMENT

CentraleSupélec

SNCF

orange

•edf

Académie des sciences

• PHD project presentations

Methodological perspectives

• Towards future collaborations and next steps for addressing new challenges

- Round Table The floor is yours
- Proposals for futur research projects (Anne Barros)
- Complements from the COPIL
- Discussion

Scientific project

• Axis 1: Modelling of systems of systems and their interdependences for risk management and resilience between several operators

• Axis 2: Modelling and optimisation of maintenance tasks in order to reduce their impact on service continuity (internally and between operators)

• Axis 3: Common models and methods platform

Resilience perspective

SCIENCE & ENSEIGNEMENT

Cilation: Nail Belaid, Y.; Condray P.; Sanchez-Torres, J.; Fang, Y.P. Zeng, Z.; Barros, A. Resiliene Quantification of Smart Distribution Networks – A Bind's Eyv View Per spective. *Europis* **1021**, *14*, x https://doi.org/10.3300/sexxx

Competences

CentraleSupélec

SNC

orange

edf

edf

- Risk analysis, reliability, prognosis, maintenance
- Probabilistic and stochastic modeling
- Data analysis
- Mathematical programming
- Stochastic optimization
- Decision making under uncertainty
- Integration of AI techniques
- Integration of the human factor

SCIENCE & ENSEIGNEMENT

0:

Académie des sciences

Axis 1

Modelling of systems of systems and their interdependences for risk management and resilience between several operators

SCIENCE & ENSEIGNEMENT

0

Académie des sciences

CentraleSupélec

SNCF

orange

edf

edf

Modelling interdependent networks Andrea Bellè (Chaire RRSC)

Coupling interface modeling

Existing literature

Most of the times the coupling interface is a given parameter

• Different interface designs not considered

Network metrics-based coupling (e.g. [1]-[2])

- Degree, betweenness
- At best an "educated guess"

Network metrics-based heuristics (e.g. [3]-[4])

• Global optimum not guaranteed

[1] Rueda, Diego F., and Eusebi Calle. "Using interdependency matrices to mitigate targeted attacks on interdependent networks: A case study involving a power grid and backbone telecommunications networks." International Journal of Critical Infrastructure Protection 16 (2017): 3-12.

[2] Guo, Hengdao, Samson S. Yu, Herbert HC Iu, Tyrone Fernando, and Ciyan Zheng. "A complex network theory analytical approach to power system cascading failure—From a cyber-physical perspective." *Chaos: An Interdisciplinary Journal of Nonlinear Science* 29, no. 5 (2019): 053111.

[3] Ouyang, Min, and Leonardo Dueñas-Osorio. "An approach to design interface topologies across interdependent urban infrastructure systems." Reliability Engineering & System Safety 96, no. 11 (2011): 1462-1473.

[4] Winkler, James, Leonardo Dueñas-Osorio, Robert Stein, and Devika Subramanian. "Interface network models for complex urban infrastructure systems." Journal of Infrastructure Systems 17, no. 4 (2011): 138-150.

Power and gas network (IPGN)

POWER NETWORK

14 nodes

CentraleSupélec

> 20 edges

GAS NETWORK

- ▷ 9 nodes
- ▷ 9 edges

FAILURE SCENARIOS

Number of elements failed bounded by K_{att}

COUPLING INTERFACE - INTERDEPENDENCIES

- Each node in GN dependent on 1 node in PN
- Each generator in PN dependent on 1 node in GN
- Each interdependency has a cost per kilomete
- The total cost of the coupling interface is bounded by the available monetary budget B_c

Optimal coupling interface

$$\max_{\substack{\{\mathbf{p}^{0}, \mathbf{d}^{0}, \mathbf{f}^{0}, \boldsymbol{\theta}^{0}, \boldsymbol{\delta}^{0}\} \\ \mathbf{y} \in \mathcal{C}}} \min_{\mathbf{u} \in \mathcal{A}} \max_{\{\mathbf{p}, \mathbf{d}, \mathbf{f}, \boldsymbol{\theta}, \boldsymbol{\delta}\}} w_{PN} \frac{\sum_{i \in V_{PN}} d_i}{\overline{d}_{PN}^{max}} + w_{GN} \frac{\sum_{i \in V_{GN}} d_i}{\overline{d}_{GN}^{max}}$$

▷ Tri-level optimization model

CentraleSupéleo

- ▷ Combined performance of interdependent CIs
- Identification of the most robust coupling interface (maximization of performance in the worst-case failure scenario)

DEFENDER (OPERATIONS): optimize operational variables (power/gas production, supply, flow, etc.) in order to maximize the combined performance

ATTACKER (LINES): choose a feasible attack plan in order to minimize the combined performance (in other words, find the worst-case attack plan)

 \triangleright

DEFENDER (PLANNER): optimize coupling variables (interdependencies) in order to maximize the combined performance under the worst-case attack

Bellè Andrea, Abdin F. Adam, Zeng Zhiguo, Fang Yi-Ping and Barros Anne, "A mathematical framework for the optimal coupling of interdependent critical infrastructures", IEEE Transactions on Systems, Man and Cybernetics: Systems, under review y : Yiping FANG ation panel : CE39 - Sécurité globale, résilience et gestion de crise, cybersécurité

Associated projects

 APP ANR JCJC – CE39 – Sécurité globale, Résilience et gestion de crise, Cybersécurité . Yiping Fang is leading a 4 years project: "Robust and Scalable Prescriptive Analytics for the Resilience of Critical Infrastructure Networks"

Fig. 1. The overall structure of the project

SCIENCE & ENSEIGNEMENT

CentraleSupélec

SNCF

orange

•edf

CentraleSupélec SNCF orange edf 0 Académie des sciences **edf**

Axis 2

Modelling and optimisation of maintenance tasks in order to reduce their impact on service continuity (internally and between operators)

Maintenance optimization planification critical infrastructures Matthieu Roux (Chaire RRSC)

Fleets are complex distributed systems to maintain

Objective: optimize condition-based maintenance (CBM) strategies

Orange

, **.•**

EDF

CentraleSupélec

Layout

entraleSunél

The study is decomposed into 2 steps

□ Step 1: Optimize a CBM policy on a 1-item system

- Fix the degradation model
- Model the monitoring quality
- Compare solving algorithms

Step 2: Generalize to large distributed systems

- System level constraints (ressource, availability, etc...)
- Opportunistic maintenance considerations
- \triangle Curse of dimensionality \rightarrow heuristic or hybrid approaches

Associated projects

 APP ANR JCJC – H19 – Industrie du Futur : homme, organisation, technologies. Zhiguo Zeng is leading a 4 years project: "Digital Failure Twin for online reliability assessment and predictive maintenance of future manufacturing systems"

Challenges to the reliability of future industrial systems:

- Few failure data available.
- Existing digital twin-based models only consider a single failure process.

In this project, we intend to develop:

- Digital Failure Twin (DFT).
- Online reliability assessment methods based on DFT.
- Predictive maintenance models based on DFT.

In order to:

- Improve the reliability.
- Reduce the operation costs of future manufacturing systems.

Use cases:

New reliability model needed.

Digital twin

Need to consider multiple dependent failure processes.

- An intelligent
 production line
- Supported by GE Healthcare

Multiple dependent

failure processes

E, {G, R}, A,

SHA

 $\{q, e, q'\}$

{G}, H, F

Académie des sciences

orange

edf

CentraleSupélec

Associated projects for Axis 1 and 2

Master projects

- Building a (deep) reinforcement learning model for the optimization of condition-based maintenance planning with imperfect monitoring
- Resilience and optimization of power systems with high penetration of renewables considering climate change

Second year projects

- Evaluation and improvement of a deep reinforcement learning model for the planning of condition-based maintenance operations in a large-scale industrial system
- Recommissioning Networked-Systems During Extreme Events Using Machine Learning

• Internships

Académie des sciences

SCIENCE & ENSEIGNEMENT

orange

edf

entraleSupélec

Visiting Professors

- David Coit
 - Department of Industrial System Engineering
 - Rutgers University
 - https://www.davidcoit.net/home

• John Andrews

- Resilience Engineering Research Group
- Nottingham University Llyod's Register Foundation
- <u>https://www.nottingham.ac.uk/engineering/people/john.andrews</u>

Hiba Baroud

- Associate Chair, Civil and Environmental Engineering
- Vanderbilt University
- <u>https://engineering.vanderbilt.edu/bio/hiba-baroud</u>

• Shizhe Chen

- Department of Statistics
- UC Davis, USA

https://statistics.ucdavis.edu/people/shizhe-chen

SCIENCE & ENSEIGNEMENT

CentraleSupélec

SNCF

orange

edf

Industry of the Futur @ CS

- Junior Chair: Human centered Explainable IA for Industry of the Futur
- Master of Science IA Decision under Uncertainty and Predictive Maintenance
- Platform project
 - A production line with belt conveyor
 - Robot arms (one or more) with camaras that supports human collaboration and could be programmed to implement some computer vision algorithms
 - A communication module based on 5G that allows us to teach telecommunication used in industry (networked control for example)
 - A camara that allows implementing quality inspections based on computer visions
 - Simulation software that allows creating virtual models for the systems.

SCIENCE & ENSEIGNEMENT

Académie des sciences

orange

edf

CentraleSupélec

