MODEL-BASED HUMAN-SYSTEM INTEGRATION FOR GRADE OF AUTOMATION 2 (GOA2) WITH TRAIN DRIVING ASSISTANCE

PhD Candidate - Yang SUN

Supervisors - Prof. Anne BARROS, Prof. Guy André BOY

Manager SNCF - Dr. Marc SANGO

Laboratoire Génie Industriel

LUNDI 2 OCTOBRE 2023

+ 01. INDUSTRIAL CONTEXT

• AUTOMATED TRAINS OPERATION (ATO) ON GOA2

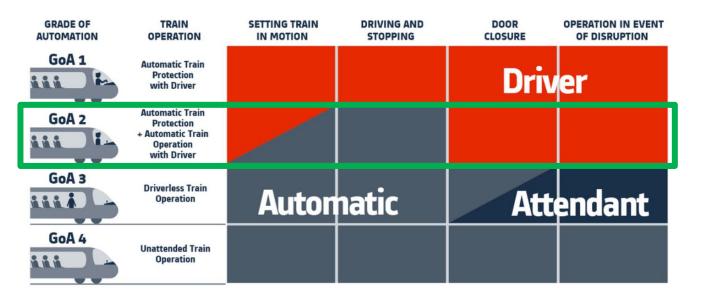
+ 02. STATE OF ART

- FOR TO-BE SYSTEM GOA2 : PRELIMINARY RISK ANALYSIS BY SNCF
- FOR AS-IS SYSTEM GOA1 : TRAIN DRIVERS TRAINING PROCESS & INCIDENTS BASES
- HUMAN SYSTEM INTEGRATION METHOD (PRODEC DEVELOPED IN FLEXTECH)
- + 03.METHODOLOGY : SAFETY-ORIENTED PRODEC
- SCENARIOS SELECTION BY INCIDENTS ANALYSES
- SCENARIOS CONSTRUCTION & MODELLING

+ 04.SIMULATORS & NEXT STEPS

+ 01. INDUSTRIAL CONTEXT

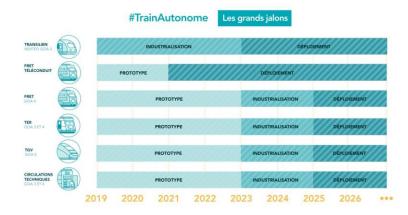
• AUTOMATED TRAINS OPERATION (ATO) ON GOA2


+ 02. STATE OF ART

- FOR TO-BE SYSTEM GOA2 : PRELIMINARY RISK ANALYSIS BY SNCF
- FOR AS-IS SYSTEM GOA1 : TRAIN DRIVERS TRAINING PROCESS & INCIDENTS BASES
- HUMAN SYSTEM INTEGRATION METHOD (PRODEC DEVELOPED IN FLEXTECH)
 + 03.METHODOLOGY : SAFETY-ORIENTED PRODEC
- SCENARIOS SELECTION BY INCIDENTS ANALYSES
- SCENARIOS CONSTRUCTION & MODELLING

+ 04.SIMULATORS & NEXT STEPS

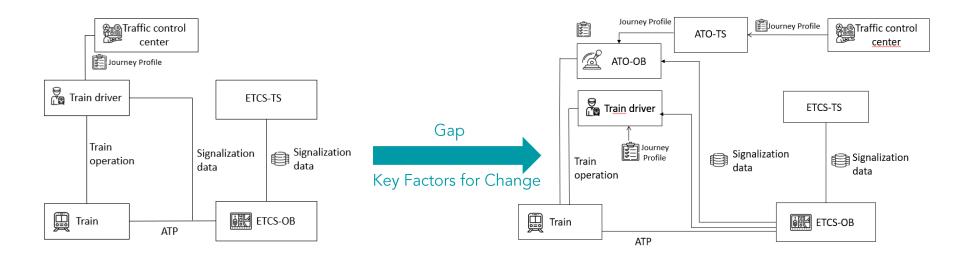
SNCF AMBITION: AUTONOMOUS TRAINS



Grade of Automation (GoA2) is an intermediate level of automation that integrates the Automatic Train Operation (ATO) which provides the service of acceleration and deceleration. It is surpvised by the Automatic Train Protection system (ATP). The train driver is always in charge of the exchanges with passengers, door control, and other unexpected situations.

RESEARCH CONTEXT WITHIN SNCF

SNCF AIMS TO DEVELOP AUTOMATED TRAINS. HOW DOES THE ROLE OF PEOPLE EVOLVE IN RAILWAY SYSTEMS DURING AUTOMATION CHANGE?


WITH THIS INCREASING AUTONOMY, HOW CAN WE ALLOCATE THE FUNCTIONS TO HUMANS AND TECHNICAL SYSTEMS TO BETTER ENSURE SAFETY AND SECURITY?

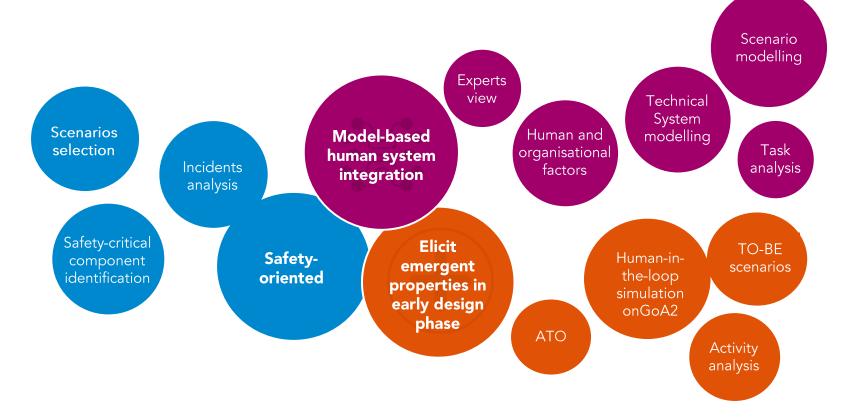
RESEARCH CONTEXT WITHIN SNCF AS-IS & TO-BE ANALYSIS

Project the future application on GoA2 by analysing the existing scenarios

RESEARCH CONTEXT WITHIN SNCF: A LOOK IN THE CABIN

DRIVER MACHINE INTERFACE (DMI) IN CABIN

Classical driving cabin


Automated Train Operation (ATO) Panel

Source: https://www.lettreducheminot.fr/ertms-ecran-regio2n/; http://transportrail.canalblog.com/pages/ertms---les-grands-principes-techniques/38926569.html;

COMPOSITION OF THESIS WORK

+ 01. INDUSTRIAL CONTEXT

AUTOMATED TRAINS OPERATION (ATO) ON GOA2

+ 02. STATE OF ART

- FOR TO-BE SYSTEM GOA2 : PRELIMINARY RISK ANALYSIS BY SNCF
- FOR AS-IS SYSTEM GOA1 : TRAIN DRIVERS TRAINING PROCESS & INCIDENTS BASES
- HUMAN SYSTEM INTEGRATION METHOD (PRODEC DEVELOPED IN FLEXTECH)
- + 03.METHODOLOGY : SAFETY-ORIENTED PRODEC
- SCENARIOS SELECTION BY INCIDENTS ANALYSES
- SCENARIOS CONSTRUCTION & MODELLING

+ 04.SIMULATORS & NEXT STEPS

FOR TO-BE SYSTEM GOA2 : PRELIMINARY RISK ANALYSIS **BY SNCF**

Several risk analysis are performed within SNCF for GoA2

Risk analysis by functions ٠

	00n2	INIQUE UE	L	1				
Fonction Technique		défaillan	Effet immédiat sur la fonction	Conséquence train et description de scénario	commentaires			
Programmer la cartographie	x	Fonction nement erroné / dégradé (retardé	cartographie de signalisation erronée	GOA2 27/10/2020 Impact sécurité: - cartographie des zone d'alguillage - Cartographie des profils (surveillance ATP garanti seulement sur ERTMS) - cartographie des fortes pentes / restritions de vitesse (pas de prise en charge ATP en survitesse vis à vis de la restriction FP) Impact régularité Le conducteur reprend la CM du train. Sil les signaux ne sont pas restrictifs, l'ATP ne fera pas de prise en charge. GOA2 ERTMS Une éventuelle survitesse entraine une prise en charge par l'ATP. GOA3 EXTMY J'UNT/2020/unille survitesse entraine une orise on charge par l'ATP.		L'AN RISC SOU	IAL DUE S EI	EMEN' YSE PR S EN C RTMS t synapsi
Programmer la cartographie	x		profil de la ligne (segment profile)	Impactrégularité Le conducteur reprend la CM du train	que content exactement la cartographie ? et comment elle agit sur la circulation Erreur sur la vitesse de ligne en Fortes Pentes : à étudier car risque de non-couverture par 'ATP (à vérifie) ==> CEX : conduite	Cext : Pas de circulation avec un ATO sans ATP actif Cext : Pas de circulation CA sur ligne non équipée ATP	icones d'état ATO	o une cartographie partielle est possible : champs de constitution de l'infra : données obligatoires (tunnel) et optionnelles (ex. balises ETCS présentes ou non sur un segment) mais conditions

FOH analysis •

JTS FOH A RELIMINAIRE DES CONDUITE GOA2

ERR:

SES

FOR AS-IS SYSTEM GOA1 : TRAIN DRIVERS TRAINING PROCESS & INCIDENTS BASES

Numéro	Tram	Ligne	Туре	Thème	Objectif(s) Pédagogique(s)	N* Train
SBX_4500	Scénario JF CO/ TVM	LN2 Montparnasse_Vendome	Anomalie	anomalie engin moteur	Être capable de traiter une disjonction avec l'allumage de LS I	8504
SBX_4501	Scénario JF CO/ TVM	LN6 Paris_Benestroff	Normale	manœuvre	Être capable de gérer une circulation sous le régime de la manœuvre sur le domaine LGV	980701
SBX_4502	Scénario JF CO/ TVM	LN6 Paris_Benestroff	Normale	manœuvre	Être capable de gérer une circulation sous le régime de la manœuvre sur le domaine LGV	980701
SBX_4503	Scénario JF CO/ TVM	LN6 ParisEst_Reims	Anomalie	obstacle	Être capable de gérer la présence d'un obstacle sur les voies	2424
SBX_4504	Scénario JF CD/ TVM	LN2 Montparnasse_Vendome	Anomalie	anomalie engin moteur	Être capable de gérer un FU COVIT lorsque la vitesse est compatible	8306
SBX_4505	Scénario JF CO/ TVM	LN6 ParisEst_Reims	Anomalie	Appareillage en mauvaise position	Être capable de gérer une transition de domaine lorsque le Z(EXPL) est en mauvaise position	2411
SBX_4506	Scénario JF CO/ KVB	LN6 ParisEst_Reims	Anomalie	SAR et SAL	Être capable de réagir à la réception d'un SAR en roulant et l'observation du SAL	2411
SBX_4507	Scénario JF CO/ KVB	LN6 ParisEst_Reims	Anomalie	SAR et une anomalie EM	Être capable de réagir à une anomalie pantographe et à la réception d'un SAR	2411
SBX_6500	Scénario JF CO/ TVM	LN6 ParisEst_Reims	Anomalie	anomalie engin moteur	Être capable de gérer une non présentation d'affichage d'une ponctuelle electrique aux abords d'une zone de sectionnement	2411
SBX_6501	Scénario JF CO/ TVM	LN6 ParisEst_Reims	Normale	Circulaton normale	Etre capable de gérer une circulation sur le domaine ETCS 2	2411
SBX_6502	Scénario JF CO/ TVM	LN6 ParisEst_Reims	Anomalie	Anomalie de signalisation	Etre capable de gérer un FU avec TR à la transition de domaine ETCS2 vers STM KVB	2424
SBX_6000	ETCS N2 Module 1	LN6 ParisEst_Reims	Normale	Circulaton normale	Etre capable de gérer une entrée et une circulation sur le domaine ETCS 2	2411
SBX_6001	ETCS N2 Module 1	LN6 ParisEst_Reims	Normale	Circulaton normale	Etre capable de gérer une entrée et une circulation sur le domaine ETCS 2	2411
SBX_6002	ETCS N2 Module 1	LN6 ParisEst_Reims	Normale	Circulaton normale	Etre capable de gérer une entrée et une circulation sur le domaine ETCS 2	2411
SBX_6003	ETCS N2 Module 1	LN6 ParisEst_Reims	Normale	Circulaton normale	Etre capable de gérer une circulation sur le domaine ETCS 2 en mode SR	2411
SBX_6004	ETCS N2 Module 1	LN6 ParisEst_Reims	Normale	Circulaton normale	Etre capable de gérer une entrée sur le domaine ETCS2 avec l'indication Avertissement sur le dernier PSL	2411

More than 1,000 training scenarios are available inside the SNCF training center for different kind of simulators. From which we can start our simulations and project to future applications on GoA2?

Exemple of training scenarios inside SNCF for train drivers' educational purpose

FOR AS-IS SYSTEM GOA1 : TRAIN DRIVERS TRAINING PROCESS & INCIDENTS BASES

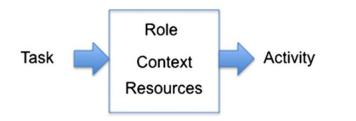
Review of the incidents that happened in the past years to anticipate the safety-critical elements and situations to improve the early design phase of GoA2.

• SNCF OPEN DATA

Nur	méro 🗘	Origine	Numéro ISIC	Type d'event	0	Date	\$ Région	Lieu	Niveau de Gravité	Nature Nature
1		Réseau		Incident grave de signalisation		20 janvier 2022	PACA	Beaulieu-sur-Mer (06)	4,0	Incident grave de signalisation entr
2		Réseau		MISISN		20 janvier 2022	CVL	Joué les tours (37)	4,0	Refoulement d'un train travaux (GI
3		Cause Tiers Voyageur		Déraillement		24 février 2022	GE	Hochfelden (67)	6,0	Un train de Voyageurs heurte un ca
4		Réseau		Défaillance voie 🛛 🖉		3 mars 2022	NAQ	Entre Silandes et Laluque (40)	3,0	Erreur de surclassement de défauts
5		Réseau		Déraillement		9 mars 2022	HDF	Desvres (62)	3,0 .2	Déraillement d'un train SNCF Fret
6		Réseau		Collision contre obstatle a un pass		15 mars 2022	NAQ	St denis du pain (17)	4.0	Franchissement d'un passage à niv
7		Voyageur		Dépassement de l'vitesse limite e	++:	9 juin 2022	HDF	Entre Maurois et Cambrai (59)	4.0 0	Un conducteur respecte une LTV 6
8		Réseau		Expédition d'un train sans ordre éd		9 juin 2022	GE	Thionville (57)	4,0	Franchissement sans restriction par
9		Réseau		Incident gran de signalisation I		15 juin 2022	HDF	Laon (02)	10	Détection de la suppression d'un e
10		Voyageur		Dépasse en de la vitesse limite o		24 juin 2022	NAQ	entre St-Léon-sur-l'Isle- et Neuvic (24)	S	Non-respect d'un ordre DERA avec
11		Réseau		Expédition d'un train sans ordre éd		28 juin 2022	PACA	Le Thor (84)	4.0	Expédition d'un train de l'EF SNCF
12		Voyageur		AUTRE		1 juillet 2022	NAQ	Brive	4,0	Service Terminé transmis sans assur
13		Voyageur		Devut d'Immobilisation		9 juillet 2022	IDF	Paris Nord	3,0	Dérive à faible vitesse sur distance
14		Réseau		Défaillance voie		12 juillet 2022	IDF	Savigny sur orge (91)	4,0	Déformation de la voie principale,
15		Réseau		Expédition d'un train sans ordre éc		11 août 2022	PN	Montigny Beauchamp (93)	4,0	Un AC (Agent Circulation) constate
16		Réseau		Défaillance voie		30 aoút 2022	GE	Strasbourg	4,0	Découverte de défauts de géométr

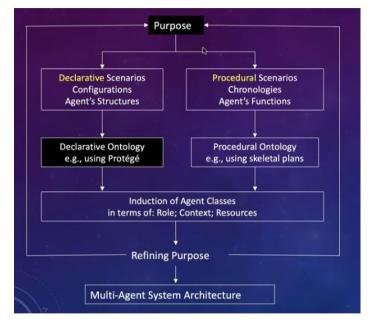
https://ressources.data.sncf.com/explore/dataset/incidents-securite/table/?sort=-niveau_gravite

INCIDENTS ANALYSIS


Severity scale for incidents and accidents (adapted from EPSF, (2016))

Severity	Measurable standards
1	"Minor" safety event
2	An event that could have had consequences on materials, or even slight injuries
3	An event that could have had individual human consequences (one or two seriously injured - 24 hours of hospitalization) or one person killed
4	An event that could have had collective human consequences (many seriously injured and/or several people killed)
5	An accident which had significant consequences
6	An accident which had serious consequences

In 2016, a working group led by EPSF (French Safety authority) defined the principles of a six-level severity scale. The most serious accidents, of levels 5 and 6, correspond to significant accidents covered by the common safety indicators (CSI), the definition of which is given in **European directive (EU)** 2016/798.


HUMAN SYSTEM INTEGRATION METHOD (PRODEC DEVELOPED IN FLEXTECH)

PRODEC is a scenario-based design method that enables the elicitation of emergent properties of a human-machine system in the design phase

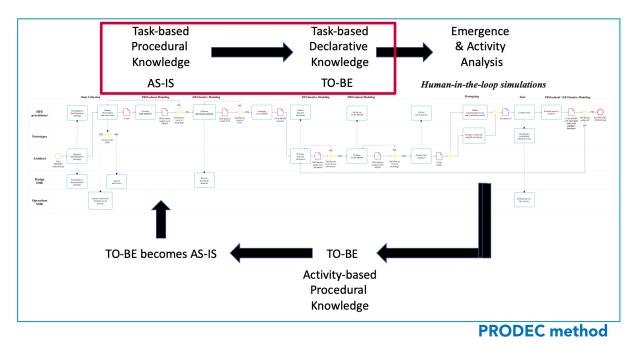
Task: what are assigned to do Activities: what really did

A **cognitive function** as a transformation of a task into an activity.

PRODEC method

+ 01. INDUSTRIAL CONTEXT

AUTOMATED TRAINS OPERATION (ATO) ON GOA2

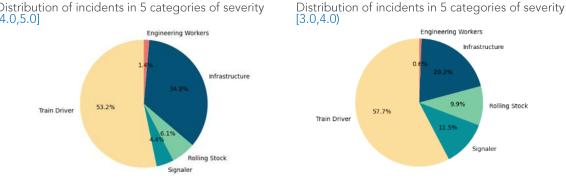

+ 02. STATE OF ART

- FOR TO-BE SYSTEM GOA2 : PRELIMINARY RISK ANALYSIS BY SNCF
- FOR AS-IS SYSTEM GOA1 : TRAIN DRIVERS TRAINING PROCESS & INCIDENTS BASES
- HUMAN SYSTEM INTEGRATION METHOD (PRODEC DEVELOPED IN FLEXTECH)
- + 03.METHODOLOGY : SAFETY-ORIENTED PRODEC
- SCENARIOS SELECTION BY INCIDENTS ANALYSES
- SCENARIOS CONSTRUCTION & MODELLING

+ 04.SIMULATORS & NEXT STEPS

PRODEC METHOD

PRODEC is a scenario-based design method that enables the elicitation of emergent properties of a human-machine system in the design phase



SCENARIOS SELECTION BY INCIDENTS ANALYSES

Incidents categorizations according to the incident cause. We defined two main categories: cause related to the infrastructure and rolling stocks, and violations of procedures and rules.

Main Cause	Sub-category	Total
Technical failure	Infrastructure	374
Technical failure	Rolling Stock	150
Human Error	Train Driver	841
Human Error	Signaler	201
Human Error	Engineering workers	43

These data show that more than 67% of incidents that have occurred in recent years on the SNCF network are related to human errors. But behind these human errors, we need to think how to improve the technical system design to better meet human needs.

Distribution of incidents in 5 categories of severity [4.0, 5.0]

SCENARIOS SELECTION BY INCIDENTS ANALYSES

Incidents categorizations according to the incident cause. We defined two main categories: cause related to the infrastructure and rolling stocks, and violations of procedures and rules.

The 10 highest severity incidents types in the French railway network 2015-2022.

Incident	Severity
Accident to person	4.89
Collision against end-of-track bumper	4.6
Collision between 2 trains rear-end	4.5
Collision against an obstacle at a level crossing	4.09
Authorization to pass a closed signal	4.0
Breakage of a piece of rolling stock	4.0
Collision against end-of-track bumper	4.0
Collision with parked or drifting vehicle	4.0
Damaged earthwork	4.0
Insufficient train brake power	4.0

The 10 most frequent incident types in the French railway network 2015-2022.

Incident Type	Occurrence	
Inadvertent crossing of a closed signal	174	
Track failure	157	
Exceeding speed limit (> 40 km/h)	132	
Serious signaling incident	119	
Dispatch without a written speed restrict order	tion 116	
Crosses level crossing with open gates	81	
Open doors in passenger trains operation	ns 78	
Derailment	75	
Fire on board a train	64	
Damaged earthwork	57	

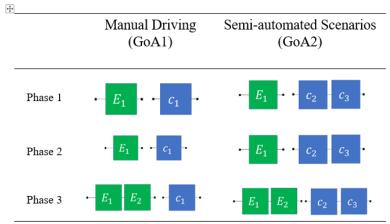
FROM INCIDENT ANALYSES TO SCENARIO CONSTRUCTION AND MODELING

From the incident analysis results, the signalization system dysfunction is a safety-critical component to add to our simulation scenarios.

Trackside signals

TVM display in cabin

After discussion with train drivers, we identified two safety-critical components from experience: obstacles on the rail and weather


Obstacles on the rail

Bad weather

SCENARIO CONSTRUCTION AND MODELING

Construct the scenario for PRODEC method application based on the safety-critical elements identified by safety analyses : Safety-critical elements in each critical driving phase

Three critical driving phases:

- Phase 1: enter high-speed area
- Phase 2: drive in high-speed area
- Phase 3: enter in destination station

Environmental components:

- *E*₁: No obstacle on the rail
- $\overline{E_1}$: Obstacle on the rail
- E_2 : Adapted weather for train operation
- $\overline{E_2}$: Bad weather for train operation

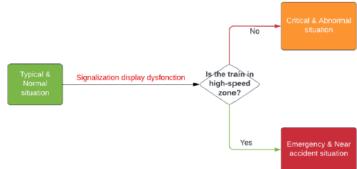
On board train components:

- GoA1:
 - c_1 : Signalization display fully functional $\overline{c_1}$: Signalization display dysfonctional
- GoA2:

 c_2 : ETCS signalization display fully functional

 $\overline{c_2}$: ETCS signalization display <u>dysfonctional</u> c_3 : ATO fully functional

 $\overline{c_3}$: ATO disengagement


SCENARIO CONSTRUCTION AND MODELING

Construct the scenario for PRODEC method application based on the safety-critical elements identified by safety analyses : The scenarios in each driving phase are composed by these safety-critical components in functional/dysfunctional states.

Three types of situations:

- T: typical & N: Normal
- C: Critical & A: Abnormal
- E: Emergency & NA: Near Accident

	GoA1	GoA2
T & N	$E_{1}c_{1}$	$E_{1}c_{2}c_{3}$
С&А	$E_1 \overline{c_1}$ (Phase 1)	$E_1 \overline{C_2} C_3$
C & A	$E_1 \overline{E_2} c_1$ (Phase 3)	$E_1 \overline{E_2} c_2 c_3$ (Phase 3)
E & NA	$E_1 \overline{c_1}$ (Phase 2)	$E_1 c_2 \overline{c_3}$
E & NA	$\overline{E_1}c_1$	$\overline{E_1}c_2c_3$

Take the example of signalization system dysfunction, on GoA1, before entering
the high-speed zone, train driver can restart the signalization display in case of dysfunction. But during the high-speed driving, this becomes an emergency

FROM INCIDENT ANALYSES TO SCENARIO CONSTRUCTION AND MODELING

Before the human in the loop simulation, we need to model the simulation scenarios to analyze the tasks assigned to train drivers. By modelling these scenarios using BPMN, which is easier to understand for all stakeholders, we can visualize and discuss the simulation scenarios more easily. This also helps us to identify the critical tasks during train driving. Basic BPMN is useful for modeling when details have not been worked out.

Activities, events, gateways, and sequence flow all have Basic BPMN level versions.

Abstract activity

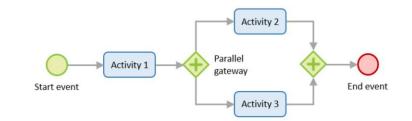
No specific execution, acts as a placeholder for documentation purposes. Start event Begins a process flow.

> End event Ends a process flow.

Parallel gateway

All inputs must be received (in any order) before the process can continue.

All outputs are activated – process continues in parallel.

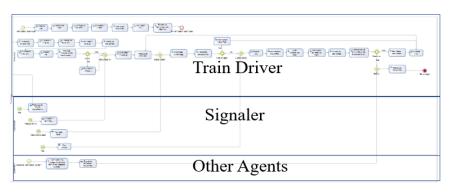


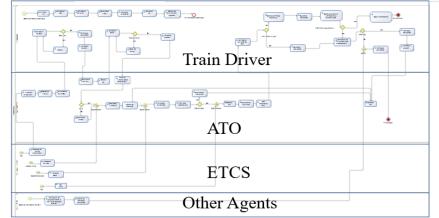
Only one input is needed for the process to continue.

Only one output is activated – a condition is needed to determine which one.

Sequence flow

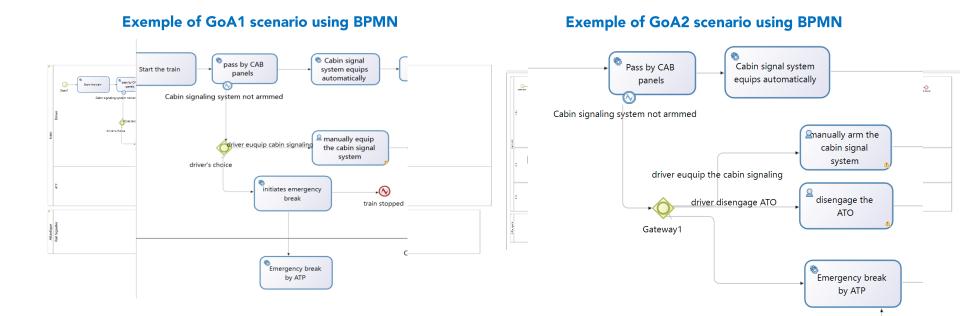
Directs process flow from activity to activity.




SCENARIO CONSTRUCTION AND MODELING

Modeling the constructed GoA1 and GoA2 scenarios under BPMN:

Exemple of GoA1 scenario under BPMN

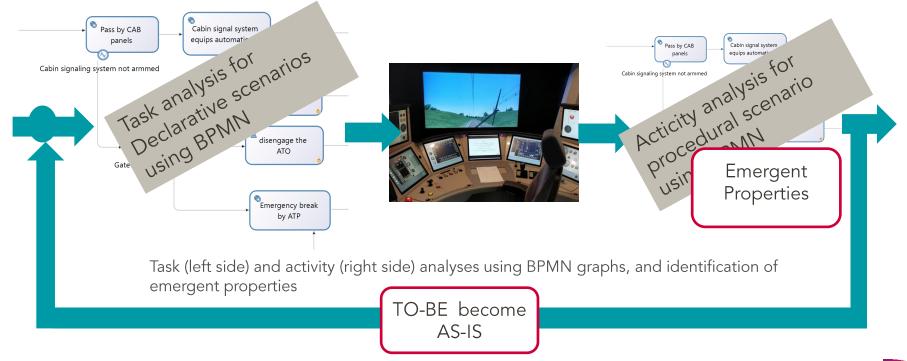

Exemple of GoA2 scenario under BPMN

SCENARIO CONSTRUCTION AND MODELING

Modeling the constructed GoA1 and GoA2 scenarios under BPMN: AS-IS and TO-BE analysis

+ 01. INDUSTRIAL CONTEXT

AUTOMATED TRAINS OPERATION (ATO) ON GOA2


+ 02. STATE OF ART

- FOR TO-BE SYSTEM GOA2 : PRELIMINARY RISK ANALYSIS BY SNCF
- FOR AS-IS SYSTEM GOA1 : TRAIN DRIVERS TRAINING PROCESS & INCIDENTS BASES
- HUMAN SYSTEM INTEGRATION METHOD (PRODEC DEVELOPED IN FLEXTECH)
 + 03.METHODOLOGY : SAFETY-ORIENTED PRODEC
- SCENARIOS SELECTION BY INCIDENTS ANALYSES
- SCENARIOS CONSTRUCTION & MODELLING

+ 04.SIMULATORS & NEXT STEPS

SIMULATORS VISITS & NEXT STEPS

Coming soon : Project with "Centre d'Ingénierie Formation Traction " (CIFT) :

Thank you !

