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1. The maintenance problem

Motivation, description and challenges
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I Motivation for the study of fleet systems

Definition: fleets are distributed systems composed of many

units that function and degrade independently

-

Objective: optimize
condition-based
maintenance (CBM)
strategies
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Basic maintenance decisions

PM > New item
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*Preventive maintenance
Maintenance ?

No 1
/ ltem continues PM
No operating
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Failed item ? Opportunity |
Yes cost
\ /—> CM > New item —0
Yes Maintenance ? *Corrective maintenance Orders of magnitude

ltem remains Opportunity
failed cost
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I Imperfect condition monitoring

How should we adapt CBM strategies to imperfect monitoring ?

4 Usually, inspections can be considered perfect (i.e., infer accurately the
degradation state of the item)

 However, for different reasons, a condition monitoring system may inacurately
estimate the state of an item
* Failing sensors
* Noise In the captured signal
* Aggregation of numerous and undirect data via Al algorithms...
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I Imperfect condition monitoring

How should we adapt CBM strategies to imperfect monitoring ?

 Usually,

Inspections

can be considered perfect (1.e., infer accurately the

degradation state of the item)

— Conducted by human technicians

 However, for different reasons, a condition monitoring system may inacurately
estimate the state of an item
* Failing sensors
* Noise In the captured signal
* Aggregation of numerous and undirect data via Al algorithms...
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I Imperfect condition monitoring

How should we adapt CBM strategies to imperfect monitoring ?

4 Usually, inspections can be considered perfect (i.e., infer accurately the
degradation state of the item)

 However, for different reasons, alcondition monitoring system|may inacurately

estimate the state of an item

* Failing sensors — Information collected
+ analyzed by
automated systems
o Remote sensors
o Interpretation

* Noise In the captured signal
* Aggregation of numerous and undirect data via Al algorithms...
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I Imperfect condition monitoring

How should we adapt CBM strategies to imperfect monitoring ?

4 Usually, inspections can be considered perfect (i.e., infer accurately the
degradation state of the item)

Costly and
accurate

U However, for different reasons, a condition monitoring system may inacurately
estimate the state of an item
* Failing sensors
* Noise In the captured signal
* Aggregation of numerous and undirect data via Al algorithms...

Cheap but
error-
prone

1) How to leverage efficiently this imperfect monitoring information ?

2) What is the value of information collected by the imperfect monitoring
system ?
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I Our objective: cost minimization...
A cost-centered maintenance problem — non-critical system

3 types of cost

. Perfect inspection (I)
Individual . .
: . Preventive maintenance (PM)
Intervention cost

Corrective maintenance (CM)

[ Individual } Cost paid when an item remains failed
opportunity cost

E.g., deployment cost, setup cost
System cost Cost paid each time one or more

Interventions are performed

Individual cost: because
can directly be
attributed to a specific
item
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I ..Wwith a resource constraint

— Because resources are limited, we limit the number of
Interventions that can be executed at each time step.

Offshore wind turbines require a specific material
A A 1 to be maintained (boats, helicopters, etc...)

%ﬁ The number of technicians is often limited
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summary of our maintenance problem

A distributed infrastructure composed of Condition-based maintenance (CBM)
many independent units framework
» Units degrade over time » imperfect online condition
» consider preventive maintenance monitoring (inaccurate but « free »
actions information)
[ Large-scale J > perfect inspections (costly +
system require resource)
Objective : minimize cost Constraint
> interventions costs > interventions require some amount
» opportunity costs of resource
» system-level cost > limited resource is available for the
whole fleet at each time step
[ Coupling cost ] . °
A [ Coupling J °
¢y constraint_ | UNIVErsIte
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I The decision process

How do we schedule interventions ?

End of the ~ Observe the

- observation working and
A sequential epoch failed units
decision-making
pProcess Update the belief about each

unit’'s state

Observe the
The schedule is compute by Execute the (imperfect)
+<——  planning of the

blocks mainly for operational condition
reasons observation epoch monitoring
data

Schedule the
interventions

for the whole .l
o} Optimization with observation

@ a MILP solver S~ epoch U n |Ve rs Ite
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2. A gquick overview of the easy
1-1tem problem and results

What if we only have 1 unit in the system ?
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With only 1 item, the problem becomes

Much easler

1. No combinatorial explosion

v" The sizes of the state and action space
remain small

2. The resource is not a limitation

v" Maintenance resource is not shared nor
scarce anymore

3. No opportunistic maintenance consideration

v Only 1 item in the system

Such problem can be modeled as a
Partially Observable Markov Decision
Process (POMDP), and solved efficiently
via approximate dynamic programming
using modern solvers.

State-of-the-art point-based
approximations: [1]

o Point-based value iteration
o SARSOP

o Perseus

'.
% [1] Kivang, 1., ©zgur-Unluakin, D., & Bilgic, T. (2022). Maintenance policy analysis of the regenerative air u n I Ve rs I te

heater system using factored POMDPs. Reliability Engineering & System Safety, 219, 108195.
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I Example on a simple case study

How much value can we expect to save ?

Definition of the Vol given by Memarzadeh, 2016 [2]

|
|
|
| « . e . ..
sa0 | o Monte-Carlo simulations " Vol is a utility-based metric related to decision
» analytical lower bound ! making under uncertainty, and it measures the
I . . iy .
_ 460 1 ! expected benefit due to the availability of a piece of
W 1 . . "
= ! information.
w440 1
S |
I . . . .
E 420 - ' = "The value of information Is the maximum cost a
S 200 | decision-maker is willing to pay for getting this
o | information’
380 + 1
|
|
360 1
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> S S S o & | . . .
& <& g N < Y : o Value of information = gap with the ‘no
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[2] Memarzadeh, M., & Pozzi, M. (2016). Value of information in sequential decision making: Component u n I Ve rs I te

inspection, permanent monitoring and system-level scheduling. Reliability Engineering & System Safety,
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3. A heuristic decomposition

method for solving the N-items
proplem

Impossible to generalize the POMDP solving method to large-scale systems!
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I Reminder of the decision process

How do we schedule interventions ?

Schedule the

Interventions

| for the whole I '.
o Optimization with observation

i @ a MILP solver <. epoch ) u n Ive rSIte
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Optimization procedure using an (heuristic)

ILP formulation
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- Q(b;, t,PM) + z{ - Q(b;, t, 1)) + 2] -

Using the Q functions from the 1-item
POMDP, we define

Q(b, t, a): expected cost of scheduling
action a at time t for an item that is initially
In a belief b, and then applying the 1-item
optimal policy.
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How to design « good » cost functions ?

1. Use the Q-function of 1-item POMDP with only individual costs

2. Same but take into account the full deployment cost

3. Something else: modify the 1-item POMDP model to try to
model approximately the interaction between wr/t 7and the
rest of the fleet

Expected future costs are very dependent on:
o The availability of the maintenance resource Should be included, somehow,

o How much interventions tend to be in a modified 1-item POMDP °

(.,.) opportunistically grouped u n IVe rs|té
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4. Case study and encouraging
results
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I 1) Our iterative procedure seems to converge

Converge towards a « low-cost » (good ?) solution

Total cost (simulation) vs. iteration
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—4— imperfect monitoring 1
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L
S 22000
)
i}
E
= i g4
: + 1
L]
™ 18000 A
)
2
16000 ~
14000 A
T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

iteration

®
universite

PARIS-SACLAY (22



I 2) Vol provided by the monitoring system

Our heuristic procedure seems to capture this expected pattern: better monitoring systems lead to
lower-cost solutions

total cost (simulation)

Total cost (simulation)
vs. monitoring guality
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I 3) Comparison with simpler alternatives

Our modified 1-item POMDP seems to be relevant within this decomposition framework

_ Our proposed method | Full deploy. Cost Zero deploy. Cost

No monitoring 22,920 +10.3% +13.9%
Imperfect monitoring 1 19,090 +8.0% +23.3%
Imperfect monitoring 2 17,760 +7.6% +26.6%
Imperfect monitoring 3 17,000 +6.9% +29.5%
Imperfect monitoring4 15,830 +4.7% +35.2%
Imperfect monitoring 5 14,870 +3.4% +41.4%
Perfect monitoring 13,760 +2.1% +55.8%
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5. Conclusion

Limitations and potential future extensions
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Some limitations to my current work

Elements that could be incorporated for a more realistic model:

External factor impacting the cost or the availability of the resource (such as the
weather conditions limiting interventions)

Interventions duration could be refined

= Schedule some interventions way more in advance (delay)

Dynamically adjust the planning to any unexpected situation
* Heterogeneous fleet

* Consider the sub-components of each unit (fleet as a system of systems) °

O universite

CentraleSupélec PARIS-SACLAY



